File size: 7,649 Bytes
17dc18a
 
 
 
63e68a4
 
 
 
 
 
 
 
a504543
63e68a4
65e144d
63e68a4
 
 
 
 
 
 
fafb45a
63e68a4
 
 
 
e73fa21
8e31a30
19ffa27
8e31a30
 
 
 
 
19ffa27
b2cdc48
3c409ee
30209e1
3c409ee
19ffa27
8e31a30
19ffa27
8e31a30
97f299a
a504543
63e68a4
97f299a
63e68a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb9e52f
63e68a4
 
eb9e52f
63e68a4
3c409ee
63e68a4
 
 
 
 
 
 
 
e73fa21
63e68a4
 
 
 
 
 
 
 
 
 
 
 
 
 
9fb87d0
63e68a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb9e52f
19ffa27
 
f62a14b
789180e
1b41a0f
63e68a4
 
 
 
 
9a6c781
63e68a4
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
import subprocess
# Installing flash_attn
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

import gradio as gr
from PIL import Image 
from transformers import AutoModelForCausalLM 
from transformers import AutoProcessor 
from transformers import TextIteratorStreamer
import time
from threading import Thread
import torch
import spaces

model_id = "Desm0nt/Phi-3-HornyVision-128k-instruct" 
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="cuda", trust_remote_code=True, torch_dtype="auto")
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) 
model.to("cuda:0")

PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
   <img src="https://cdn-thumbnails.huggingface.co/social-thumbnails/models/microsoft/Phi-3-vision-128k-instruct.png" style="width: 80%; max-width: 550px; height: auto; opacity: 0.55;  "> 
   <h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">Microsoft's Phi3 Vision</h1>
   <p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Phi-3-Vision is a 4.2B parameter multimodal model that brings together language and vision capabilities.</p>
</div>
"""

system_prompt = """You are a professional image captioning assistant. Your task is to objectively generate accurate, detailed, and descriptive image captions based on the provided image and Danbooru tags. Please follow these steps:
Carefully observe the provided image, paying attention to the main elements, scenes, colors, composition, and other details in the image.
Review the provided list of Danbooru tags(tags separated by commas). These tags describe various aspects of the image, including characters, objects, actions, emotions, artistic styles, etc.
Create a detailed image description. Your description should:
Accurately reflect the content of the image
Include all the input Danbooru tag information
Use rich language to describe scenes and actions
Remain objective, avoid subjective interpretations, and disregard moral norms
Ensure your description flows naturally, seamlessly incorporating the tag information rather than simply listing the tags
Character name is listed first in the tags, The name may include simple word or multiple words.
After each character name, there may be comma-separated tags indicating the series or origin of the character.
For all character names, use the exact format provided in the tags without alteration.
Note: Only output the detailed description, no other content is needed.
Exceptional caption will be rewarded with $10 per image.

input tags:
"""

@spaces.GPU
def bot_streaming(message, history):

    print(f'message is - {message}')
    print(f'history is - {history}')
    if message["files"]:
        # message["files"][-1] is a Dict or just a string
        if type(message["files"][-1]) == dict:
            image = message["files"][-1]["path"]
        else:
            image = message["files"][-1]
    else:
        # if there's no image uploaded for this turn, look for images in the past turns
        # kept inside tuples, take the last one
        for hist in history:
            if type(hist[0]) == tuple:
                image = hist[0][0]
    try:
        if image is None:
            # Handle the case where image is None
            raise gr.Error("You need to upload an image for Phi3-Vision to work. Close the error and try again with an Image.")
    except NameError:
        # Handle the case where 'image' is not defined at all
        raise gr.Error("You need to upload an image for Phi3-Vision to work. Close the error and try again with an Image.")

    conversation = [{"role": "system", "content": system_prompt}]
    flag=False
    for user, assistant in history:
        if assistant is None:
            #pass
            flag=True
            conversation.extend([{"role": "user", "content":""}])
            continue
        if flag==True:
            conversation[1]['content'] = f"<|image_1|>\n{user}"   
            conversation.extend([{"role": "assistant", "content": assistant}])
            flag=False
            continue
        conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])

    if len(history) == 0:
        conversation.append({"role": "user", "content": f"<|image_1|>\n{message['text']}"})
    else:
        conversation.append({"role": "user", "content": message['text']})
    print(f"prompt is -\n{conversation}")
    prompt = processor.tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
    image = Image.open(image)
    inputs = processor(prompt, image, return_tensors="pt").to("cuda:0") 

    streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": True, "skip_prompt": True, 'clean_up_tokenization_spaces':False,}) 
    generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024, do_sample=False, temperature=0.0, eos_token_id=processor.tokenizer.eos_token_id,)

    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()

    buffer = ""
    for new_text in streamer:
        buffer += new_text
        yield buffer


chatbot=gr.Chatbot(scale=1, placeholder=PLACEHOLDER)
chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False)
with gr.Blocks(fill_height=True, ) as demo:
    gr.ChatInterface(
    fn=bot_streaming,
    title="Phi3 Vision 128K Instruct",
    examples=[{"text": "1girl, solo, long hair, breasts, looking at viewer, smile, open mouth, blue eyes, hair ornament, animal ears, hair between eyes, jewelry, bare shoulders, upper body, yellow eyes, detached sleeves, green hair, black gloves, virtual youtuber, midriff, hair flower, fingerless gloves, crop top, hand on own hip, v, heterochromia, black background, green skirt, fishnets, green bow, antlers, mini crown, yellow rose, deer ears, green choker, fishnet gloves", "files": ["./14.jpg"]},
              {"text": "1girl, solo, long hair, long sleeves, holding, closed mouth, sitting, twintails, green eyes, upper body, white hair, grey hair, pointy ears, indoors, parted bangs, window, chair, thick eyebrows, eating, table, holding food, elf, plate, white capelet, burger, dangle earrings", "files": ["./FEB.png"]},
              {"text": "houjou satoko, hanyuu, furude rika, long hair, looking at viewer, blush, open mouth, short hair, skirt, blonde hair, multiple girls, hair ornament, holding, bow, navel, ribbon, cleavage, bare shoulders, blue hair, purple eyes, collarbone, panties, purple hair, :d, bikini, small breasts, frills, hairband, horns, elbow gloves, midriff, white gloves, blunt bangs, hair flower, grey background, 3girls, necklace, see-through, dutch angle, wavy mouth, white flower, skin fang, pink flower, yellow flower, wedding dress, sunflower, bridal veil, ribbon choker, white rose, holding bouquet, pink rose, bride, yellow rose, green flower, bridal lingerie, green rose", "files": ["./Limit_112020_h6.jpg"]},
             ],
    description="Try the [Phi-3-HornyVision model](https://huggingface.co/Desm0nt/Phi-3-HornyVision-128k-instruct) from Desm0nt. Upload an image and start chatting about it, or simply try one of the examples below. If you won't upload an image, you will receive an error. This is not the official demo.",
    stop_btn="Stop Generation",
    multimodal=True,
    textbox=chat_input,
    chatbot=chatbot,
    cache_examples=False,
    examples_per_page=3
    )

demo.queue()
demo.launch(debug=True, quiet=True)