File size: 3,853 Bytes
6f7f0bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
from torch import nn as nn

from basicsr.utils.registry import ARCH_REGISTRY


@ARCH_REGISTRY.register()
class VGGStyleDiscriminator(nn.Module):
    """VGG style discriminator with input size 128 x 128 or 256 x 256.

    It is used to train SRGAN, ESRGAN, and VideoGAN.

    Args:
        num_in_ch (int): Channel number of inputs. Default: 3.
        num_feat (int): Channel number of base intermediate features.Default: 64.
    """

    def __init__(self, num_in_ch, num_feat, input_size=128):
        super(VGGStyleDiscriminator, self).__init__()
        self.input_size = input_size
        assert self.input_size == 128 or self.input_size == 256, (
            f'input size must be 128 or 256, but received {input_size}')

        self.conv0_0 = nn.Conv2d(num_in_ch, num_feat, 3, 1, 1, bias=True)
        self.conv0_1 = nn.Conv2d(num_feat, num_feat, 4, 2, 1, bias=False)
        self.bn0_1 = nn.BatchNorm2d(num_feat, affine=True)

        self.conv1_0 = nn.Conv2d(num_feat, num_feat * 2, 3, 1, 1, bias=False)
        self.bn1_0 = nn.BatchNorm2d(num_feat * 2, affine=True)
        self.conv1_1 = nn.Conv2d(num_feat * 2, num_feat * 2, 4, 2, 1, bias=False)
        self.bn1_1 = nn.BatchNorm2d(num_feat * 2, affine=True)

        self.conv2_0 = nn.Conv2d(num_feat * 2, num_feat * 4, 3, 1, 1, bias=False)
        self.bn2_0 = nn.BatchNorm2d(num_feat * 4, affine=True)
        self.conv2_1 = nn.Conv2d(num_feat * 4, num_feat * 4, 4, 2, 1, bias=False)
        self.bn2_1 = nn.BatchNorm2d(num_feat * 4, affine=True)

        self.conv3_0 = nn.Conv2d(num_feat * 4, num_feat * 8, 3, 1, 1, bias=False)
        self.bn3_0 = nn.BatchNorm2d(num_feat * 8, affine=True)
        self.conv3_1 = nn.Conv2d(num_feat * 8, num_feat * 8, 4, 2, 1, bias=False)
        self.bn3_1 = nn.BatchNorm2d(num_feat * 8, affine=True)

        self.conv4_0 = nn.Conv2d(num_feat * 8, num_feat * 8, 3, 1, 1, bias=False)
        self.bn4_0 = nn.BatchNorm2d(num_feat * 8, affine=True)
        self.conv4_1 = nn.Conv2d(num_feat * 8, num_feat * 8, 4, 2, 1, bias=False)
        self.bn4_1 = nn.BatchNorm2d(num_feat * 8, affine=True)

        if self.input_size == 256:
            self.conv5_0 = nn.Conv2d(num_feat * 8, num_feat * 8, 3, 1, 1, bias=False)
            self.bn5_0 = nn.BatchNorm2d(num_feat * 8, affine=True)
            self.conv5_1 = nn.Conv2d(num_feat * 8, num_feat * 8, 4, 2, 1, bias=False)
            self.bn5_1 = nn.BatchNorm2d(num_feat * 8, affine=True)

        self.linear1 = nn.Linear(num_feat * 8 * 4 * 4, 100)
        self.linear2 = nn.Linear(100, 1)

        # activation function
        self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)

    def forward(self, x):
        assert x.size(2) == self.input_size, (f'Input size must be identical to input_size, but received {x.size()}.')

        feat = self.lrelu(self.conv0_0(x))
        feat = self.lrelu(self.bn0_1(self.conv0_1(feat)))  # output spatial size: /2

        feat = self.lrelu(self.bn1_0(self.conv1_0(feat)))
        feat = self.lrelu(self.bn1_1(self.conv1_1(feat)))  # output spatial size: /4

        feat = self.lrelu(self.bn2_0(self.conv2_0(feat)))
        feat = self.lrelu(self.bn2_1(self.conv2_1(feat)))  # output spatial size: /8

        feat = self.lrelu(self.bn3_0(self.conv3_0(feat)))
        feat = self.lrelu(self.bn3_1(self.conv3_1(feat)))  # output spatial size: /16

        feat = self.lrelu(self.bn4_0(self.conv4_0(feat)))
        feat = self.lrelu(self.bn4_1(self.conv4_1(feat)))  # output spatial size: /32

        if self.input_size == 256:
            feat = self.lrelu(self.bn5_0(self.conv5_0(feat)))
            feat = self.lrelu(self.bn5_1(self.conv5_1(feat)))  # output spatial size: / 64

        # spatial size: (4, 4)
        feat = feat.view(feat.size(0), -1)
        feat = self.lrelu(self.linear1(feat))
        out = self.linear2(feat)
        return out