|
|
|
import os |
|
|
|
import huggingface_hub, spaces |
|
huggingface_hub.snapshot_download(repo_id='tsujuifu/ml-mgie', repo_type='model', local_dir='_ckpt', local_dir_use_symlinks=False) |
|
os.system('ls _ckpt') |
|
|
|
from PIL import Image |
|
|
|
import numpy as np |
|
import torch as T |
|
import transformers, diffusers |
|
|
|
from conversation import conv_templates |
|
from mgie_llava import * |
|
|
|
import gradio as gr |
|
|
|
def crop_resize(f, sz=512): |
|
w, h = f.size |
|
if w>h: |
|
p = (w-h)//2 |
|
f = f.crop([p, 0, p+h, h]) |
|
elif h>w: |
|
p = (h-w)//2 |
|
f = f.crop([0, p, w, p+w]) |
|
f = f.resize([sz, sz]) |
|
return f |
|
def remove_alter(s): |
|
if 'ASSISTANT:' in s: s = s[s.index('ASSISTANT:')+10:].strip() |
|
if '</s>' in s: s = s[:s.index('</s>')].strip() |
|
if 'alternative' in s.lower(): s = s[:s.lower().index('alternative')] |
|
if '[IMG0]' in s: s = s[:s.index('[IMG0]')] |
|
s = '.'.join([s.strip() for s in s.split('.')[:2]]) |
|
if s[-1]!='.': s += '.' |
|
return s.strip() |
|
|
|
DEFAULT_IMAGE_TOKEN = '<image>' |
|
DEFAULT_IMAGE_PATCH_TOKEN = '<im_patch>' |
|
DEFAULT_IM_START_TOKEN = '<im_start>' |
|
DEFAULT_IM_END_TOKEN = '<im_end>' |
|
PATH_LLAVA = '_ckpt/LLaVA-7B-v1' |
|
|
|
tokenizer = transformers.AutoTokenizer.from_pretrained(PATH_LLAVA) |
|
model = LlavaLlamaForCausalLM.from_pretrained(PATH_LLAVA, low_cpu_mem_usage=True, torch_dtype=T.float16, use_cache=True).cuda() |
|
image_processor = transformers.CLIPImageProcessor.from_pretrained(model.config.mm_vision_tower, torch_dtype=T.float16) |
|
|
|
tokenizer.padding_side = 'left' |
|
tokenizer.add_tokens(['[IMG0]', '[IMG1]', '[IMG2]', '[IMG3]', '[IMG4]', '[IMG5]', '[IMG6]', '[IMG7]'], special_tokens=True) |
|
model.resize_token_embeddings(len(tokenizer)) |
|
ckpt = T.load('_ckpt/mgie_7b/mllm.pt', map_location='cpu') |
|
model.load_state_dict(ckpt, strict=False) |
|
|
|
mm_use_im_start_end = getattr(model.config, 'mm_use_im_start_end', False) |
|
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) |
|
if mm_use_im_start_end: tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) |
|
|
|
vision_tower = model.get_model().vision_tower[0] |
|
vision_tower = transformers.CLIPVisionModel.from_pretrained(vision_tower.config._name_or_path, torch_dtype=T.float16, low_cpu_mem_usage=True).cuda() |
|
model.get_model().vision_tower[0] = vision_tower |
|
vision_config = vision_tower.config |
|
vision_config.im_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_PATCH_TOKEN])[0] |
|
vision_config.use_im_start_end = mm_use_im_start_end |
|
if mm_use_im_start_end: vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN]) |
|
image_token_len = (vision_config.image_size//vision_config.patch_size)**2 |
|
|
|
_ = model.eval() |
|
|
|
pipe = diffusers.StableDiffusionInstructPix2PixPipeline.from_pretrained('timbrooks/instruct-pix2pix', torch_dtype=T.float16).to('cuda') |
|
pipe.set_progress_bar_config(disable=True) |
|
pipe.unet.load_state_dict(T.load('_ckpt/mgie_7b/unet.pt', map_location='cpu')) |
|
print('--init MGIE--') |
|
|
|
@spaces.GPU(enable_queue=True) |
|
def go_mgie(img, txt, seed, cfg_txt, cfg_img): |
|
EMB = ckpt['emb'].cuda() |
|
with T.inference_mode(): NULL = model.edit_head(T.zeros(1, 8, 4096).half().to('cuda'), EMB) |
|
|
|
img, seed = crop_resize(Image.fromarray(img).convert('RGB')), int(seed) |
|
inp = img |
|
|
|
img = image_processor.preprocess(img, return_tensors='pt')['pixel_values'][0] |
|
txt = "what will this image be like if '%s'"%(txt) |
|
txt = txt+'\n'+DEFAULT_IM_START_TOKEN+DEFAULT_IMAGE_PATCH_TOKEN*image_token_len+DEFAULT_IM_END_TOKEN |
|
conv = conv_templates['vicuna_v1_1'].copy() |
|
conv.append_message(conv.roles[0], txt), conv.append_message(conv.roles[1], None) |
|
txt = conv.get_prompt() |
|
txt = tokenizer(txt) |
|
txt, mask = T.as_tensor(txt['input_ids']), T.as_tensor(txt['attention_mask']) |
|
|
|
with T.inference_mode(): |
|
_ = model.cuda() |
|
out = model.generate(txt.unsqueeze(dim=0).cuda(), images=img.half().unsqueeze(dim=0).cuda(), attention_mask=mask.unsqueeze(dim=0).cuda(), |
|
do_sample=False, max_new_tokens=96, num_beams=1, no_repeat_ngram_size=3, |
|
return_dict_in_generate=True, output_hidden_states=True) |
|
out, hid = out['sequences'][0].tolist(), T.cat([x[-1] for x in out['hidden_states']], dim=1)[0] |
|
|
|
if 32003 in out: p = out.index(32003)-1 |
|
else: p = len(hid)-9 |
|
p = min(p, len(hid)-9) |
|
hid = hid[p:p+8] |
|
|
|
out = remove_alter(tokenizer.decode(out)) |
|
_ = model.cuda() |
|
emb = model.edit_head(hid.unsqueeze(dim=0), EMB) |
|
res = pipe(image=inp, prompt_embeds=emb, negative_prompt_embeds=NULL, |
|
generator=T.Generator(device='cuda').manual_seed(seed), guidance_scale=cfg_txt, image_guidance_scale=cfg_img).images[0] |
|
|
|
return res, out |
|
|
|
def go_example(seed, cfg_txt, cfg_img): |
|
ins = ['make the frame red', 'turn the day into night', 'give him a beard', 'make cottage a mansion', |
|
'remove yellow object from dogs paws', 'change the hair from red to blue', 'remove the text', 'increase the image contrast', |
|
'remove the people in the background', 'please make this photo professional looking', 'darken the image, sharpen it', 'photoshop the girl out', |
|
'make more brightness', 'take away the brown filter form the image', 'add more contrast to simulate more light', 'dark on rgb', |
|
'make the face happy', 'change view as ocean', 'replace basketball with soccer ball', 'let the floor be made of wood'] |
|
i = T.randint(len(ins), (1, )).item() |
|
|
|
return './_input/%d.jpg'%(i), ins[i], seed, cfg_txt, cfg_img |
|
|
|
go_mgie(np.array(Image.open('./_input/0.jpg').convert('RGB')), 'make the frame red', 13331, 7.5, 1.5) |
|
print('--init GO--') |
|
|
|
with gr.Blocks() as app: |
|
gr.Markdown( |
|
""" |
|
# [ICLR\'24] Guiding Instruction-based Image Editing via Multimodal Large Language Models<br> |
|
π this demo is hosted by [Tsu-Jui Fu](https://github.com/tsujuifu/pytorch_mgie)<br> |
|
π a black image means that the output did not pass the [safety checker](https://huggingface.co/CompVis/stable-diffusion-safety-checker)<br> |
|
π if the queue is full (*no GPU available*), you can also try it [here](http://128.111.41.13:7122)<br> |
|
π if the building process takes too long, please try refreshing the page |
|
""" |
|
) |
|
with gr.Row(): inp, res = [gr.Image(height=384, width=384, label='Input Image', interactive=True), |
|
gr.Image(height=384, width=384, label='Goal Image', interactive=True)] |
|
with gr.Row(): txt, out = [gr.Textbox(label='Instruction', interactive=True), |
|
gr.Textbox(label='Expressive Instruction', interactive=False)] |
|
with gr.Row(): seed, cfg_txt, cfg_img = [gr.Number(value=13331, label='Seed', interactive=True), |
|
gr.Number(value=7.5, label='Text CFG', interactive=True), |
|
gr.Number(value=1.5, label='Image CFG', interactive=True)] |
|
with gr.Row(): btn_exp, btn_sub = [gr.Button('More Example'), gr.Button('Submit')] |
|
btn_exp.click(fn=go_example, inputs=[seed, cfg_txt, cfg_img], outputs=[inp, txt, seed, cfg_txt, cfg_img]) |
|
btn_sub.click(fn=go_mgie, inputs=[inp, txt, seed, cfg_txt, cfg_img], outputs=[res, out]) |
|
|
|
ins = ['make the frame red', 'turn the day into night', 'give him a beard', 'make cottage a mansion', |
|
'remove yellow object from dogs paws', 'change the hair from red to blue', 'remove the text', 'increase the image contrast', |
|
'remove the people in the background', 'please make this photo professional looking', 'darken the image, sharpen it', 'photoshop the girl out', |
|
'make more brightness', 'take away the brown filter form the image', 'add more contrast to simulate more light', 'dark on rgb', |
|
'make the face happy', 'change view as ocean', 'replace basketball with soccer ball', 'let the floor be made of wood'] |
|
gr.Examples(examples=[['./_input/%d.jpg'%(i), ins[i]] for i in [1, 5, 8, 14, 16]], inputs=[inp, txt]) |
|
|
|
app.launch() |
|
|