Spaces:
Sleeping
Sleeping
""" | |
Contrastive Language-Audio Pretraining Model from LAION | |
-------------------------------------------------------- | |
Paper: https://arxiv.org/abs/2211.06687 | |
Authors (equal contributions): Ke Chen, Yusong Wu, Tianyu Zhang, Yuchen Hui | |
Support: LAION | |
""" | |
import os | |
import torch | |
import librosa | |
from clap_module import create_model | |
from training.data import get_audio_features | |
from training.data import int16_to_float32, float32_to_int16 | |
from transformers import RobertaTokenizer | |
import wget | |
from clap_module.factory import load_state_dict | |
class CLAP_Module(torch.nn.Module): | |
def __init__(self, enable_fusion=False, device=None, amodel='HTSAT-tiny', tmodel='roberta') -> None: | |
"""Initialize CLAP Model | |
Parameters | |
---------- | |
enable_fusion: bool | |
if true, it will create the fusion clap model, otherwise non-fusion clap model (default: false) | |
device: str | |
if None, it will automatically detect the device (gpu or cpu) | |
amodel: str | |
audio encoder architecture, default: HTSAT-tiny | |
tmodel: str | |
text encoder architecture, default: roberta | |
""" | |
super(CLAP_Module, self).__init__() | |
if device is None: | |
device = 'cuda:0' if torch.cuda.is_available() else 'cpu' | |
precision = 'fp32' | |
if enable_fusion: | |
fusion_type = 'aff_2d' | |
model, model_cfg = create_model( | |
amodel, | |
tmodel, | |
precision=precision, | |
device=device, | |
enable_fusion=enable_fusion, | |
fusion_type=fusion_type | |
) | |
else: | |
model, model_cfg = create_model( | |
amodel, | |
tmodel, | |
precision=precision, | |
device=device, | |
enable_fusion=enable_fusion | |
) | |
self.enable_fusion = enable_fusion | |
self.model = model | |
self.model_cfg = model_cfg | |
self.tokenize = RobertaTokenizer.from_pretrained('roberta-base') | |
def tokenizer(self, text): | |
result = self.tokenize( | |
text, | |
padding="max_length", | |
truncation=True, | |
max_length=77, | |
return_tensors="pt", | |
) | |
return result | |
def load_ckpt(self, ckpt = None, model_id = -1, verbose = True): | |
"""Load the pretrained checkpoint of CLAP model | |
Parameters | |
---------- | |
ckpt: str | |
if ckpt is specified, the model will load this ckpt, otherwise the model will download the ckpt from zenodo. \n | |
For fusion model, it will download the 630k+audioset fusion model (id=3). For non-fusion model, it will download the 630k+audioset model (id=1). | |
model_id: | |
if model_id is specified, you can download our best ckpt, as: | |
id = 0 --> 630k non-fusion ckpt \n | |
id = 1 --> 630k+audioset non-fusion ckpt \n | |
id = 2 --> 630k fusion ckpt \n | |
id = 3 --> 630k+audioset fusion ckpt \n | |
Note that if your model is specied as non-fusion model but you download a fusion model ckpt, you will face an error. | |
""" | |
download_link = 'https://huggingface.co/lukewys/laion_clap/resolve/main/' | |
download_names = [ | |
'630k-best.pt', | |
'630k-audioset-best.pt', | |
'630k-fusion-best.pt', | |
'630k-audioset-fusion-best.pt' | |
] | |
if ckpt is not None: | |
print(f'Load the specified checkpoint {ckpt} from users.') | |
else: | |
print(f'Load our best checkpoint in the paper.') | |
if model_id == -1: | |
model_id = 3 if self.enable_fusion else 1 | |
package_dir = os.path.dirname(os.path.realpath(__file__)) | |
weight_file_name = download_names[model_id] | |
ckpt = os.path.join(package_dir, weight_file_name) | |
if os.path.exists(ckpt): | |
print(f'The checkpoint is already downloaded') | |
else: | |
print('Downloading laion_clap weight files...') | |
ckpt = wget.download(download_link + weight_file_name, os.path.dirname(ckpt)) | |
print('Download completed!') | |
print('Load Checkpoint...') | |
ckpt = load_state_dict(ckpt, skip_params=True) | |
self.model.load_state_dict(ckpt) | |
if verbose: | |
param_names = [n for n, p in self.model.named_parameters()] | |
for n in param_names: | |
print(n, "\t", "Loaded" if n in ckpt else "Unloaded") | |
def get_audio_embedding_from_filelist(self, x, use_tensor=False): | |
"""get audio embeddings from the audio file list | |
Parameters | |
---------- | |
x: List[str] (N,): | |
an audio file list to extract features, audio files can have different lengths (as we have the feature fusion machanism) | |
use_tensor: boolean: | |
if True, it will return the torch tensor, preserving the gradient (default: False). | |
Returns | |
---------- | |
audio_embed : numpy.darray | torch.Tensor (N,D): | |
audio embeddings that extracted from audio files | |
""" | |
self.model.eval() | |
audio_input = [] | |
for f in x: | |
# load the waveform of the shape (T,), should resample to 48000 | |
audio_waveform, _ = librosa.load(f, sr=48000) | |
# quantize | |
audio_waveform = int16_to_float32(float32_to_int16(audio_waveform)) | |
audio_waveform = torch.from_numpy(audio_waveform).float() | |
temp_dict = {} | |
temp_dict = get_audio_features( | |
temp_dict, audio_waveform, 480000, | |
data_truncating='fusion' if self.enable_fusion else 'rand_trunc', | |
data_filling='repeatpad', | |
audio_cfg=self.model_cfg['audio_cfg'], | |
require_grad=audio_waveform.requires_grad | |
) | |
audio_input.append(temp_dict) | |
audio_embed = self.model.get_audio_embedding(audio_input) | |
if not use_tensor: | |
audio_embed = audio_embed.detach().cpu().numpy() | |
return audio_embed | |
def get_audio_embedding_from_data(self, x, use_tensor=False): | |
"""get audio embeddings from the audio data | |
Parameters | |
---------- | |
x: np.darray | torch.Tensor (N,T): | |
audio data, must be mono audio tracks. | |
use_tensor: boolean: | |
if True, x should be the tensor input and the output will be the tesnor, preserving the gradient (default: False). | |
Note that if 'use tensor' is set to True, it will not do the quantize of the audio waveform (otherwise the gradient will not be preserved). | |
Returns | |
---------- | |
audio embed: numpy.darray | torch.Tensor (N,D): | |
audio embeddings that extracted from audio files | |
""" | |
self.model.eval() | |
audio_input = [] | |
for audio_waveform in x: | |
# quantize | |
if not use_tensor: | |
audio_waveform = int16_to_float32(float32_to_int16(audio_waveform)) | |
audio_waveform = torch.from_numpy(audio_waveform).float() | |
temp_dict = {} | |
temp_dict = get_audio_features( | |
temp_dict, audio_waveform, 480000, | |
data_truncating='fusion' if self.enable_fusion else 'rand_trunc', | |
data_filling='repeatpad', | |
audio_cfg=self.model_cfg['audio_cfg'], | |
require_grad=audio_waveform.requires_grad | |
) | |
audio_input.append(temp_dict) | |
audio_embed = self.model.get_audio_embedding(audio_input) | |
if not use_tensor: | |
audio_embed = audio_embed.detach().cpu().numpy() | |
return audio_embed | |
def get_text_embedding(self, x, tokenizer = None, use_tensor = False): | |
"""get text embeddings from texts | |
Parameters | |
---------- | |
x: List[str] (N,): | |
text list | |
tokenizer: func: | |
the tokenizer function, if not provided (None), will use the default Roberta tokenizer. | |
use_tensor: boolean: | |
if True, the output will be the tesnor, preserving the gradient (default: False). | |
Returns | |
---------- | |
text_embed : numpy.darray | torch.Tensor (N,D): | |
text embeddings that extracted from texts | |
""" | |
self.model.eval() | |
if tokenizer is not None: | |
text_input = tokenizer(x) | |
else: | |
text_input = self.tokenizer(x) | |
text_embed = self.model.get_text_embedding(text_input) | |
if not use_tensor: | |
text_embed = text_embed.detach().cpu().numpy() | |
return text_embed | |