import streamlit as st from streamlit import session_state as session from src.laion_clap.inference import AudioEncoder # from src.utils.spotify import SpotifyHandler, SpotifyAuthentication import pandas as pd from dotenv import load_dotenv from langchain.llms import CTransformers, Ollama from src.llm.chain import LLMChain from pymongo.mongo_client import MongoClient import os st.set_page_config(page_title="Curate me a playlist", layout="wide") load_dotenv() def load_llm_pipeline(): ctransformers_config = { "max_new_tokens": 3000, "temperature": 0, "top_k": 1, "top_p": 1, "context_length": 2800 } llm = CTransformers( model="TheBloke/Mistral-7B-Instruct-v0.1-GGUF", model_file=os.getenv("LLM_VERSION"), # model_file="mistral-7b-instruct-v0.1.Q5_K_M.gguf", config=ctransformers_config ) # llm = Ollama(temperature=0, model="mistral:7b-instruct-q8_0", top_k=1, top_p=1, num_ctx=2800) chain = LLMChain(llm) return chain @st.cache_resource def load_resources(): password = os.getenv("MONGODB_PASSWORD") url = os.getenv("MONGODB_URL") uri = f"mongodb+srv://berkaygkv:{password}@{url}/?retryWrites=true&w=majority" client = MongoClient(uri) db = client.spoti mongo_db_collection = db.saved_tracks recommender = AudioEncoder(mongo_db_collection) recommender.load_existing_audio_vectors() llm_pipeline = load_llm_pipeline() return recommender, llm_pipeline @st.cache_resource def output_songs(text): output = llm_pipeline.process_user_description(text) song_list = [] for _, song_desc in output: print(song_desc) ranking = recommender.list_top_k_songs(song_desc, k=15) song_list += ranking return pd.DataFrame(song_list)\ .sort_values("score", ascending=False)\ .drop_duplicates(subset=["track_id"])\ .drop(columns=["track_id", "score"])\ .reset_index(drop=True) recommender, llm_pipeline = load_resources() st.title("""Curate me a Playlist.""") st.info(""" Hey there, introducing the Music Playlist Curator AI! It's designed to craft playlists based on your descriptions. Here's the breakdown: we've got a Mistral 7B-Instruct 5-bit quantized version LLM running on the CPU to handle user inputs, and a Contrastive Learning model from the Amazing [LAION AI](https://github.com/LAION-AI/CLAP) team for Audio-Text joint embeddings, scoring song similarity. The songs are pulled from my personal Spotify Liked Songs through API. Using an automated data extraction pipeline, I queried each song on my list on YouTube, downloaded it, extracted audio features, and stored them on MongoDB. TODOs: - [ ] Making playlists on users' own Spotify Tracks, - [ ] Display leaderboard to show the best playlist curated, - [ ] Generate the playlist on Spotify directly """) st.success("The pipeline running on CPU which might take a few minutes to process.") st.warning(""" A caveat: because the audio data is retrieved from YouTube, there's a chance some songs might not be top-notch quality or could be live versions, impacting the audio features' quality. Another caveat: I've given it a spin with some Turkish descriptions, had some wins and some misses. I might wanna upgrade to a GPU powered environment to enchance LLM capacity in the future. Give it a shot and see how it goes! 🎶 """) # st.success(""" # """) session.text_input = st.text_input(label="Describe a playlist") session.slider_count = st.slider(label="How many tracks", min_value=5, max_value=35, step=5) buffer1, col1, buffer2 = st.columns([1.45, 1, 1]) is_clicked = col1.button(label="Curate") if is_clicked: dataframe = output_songs(session.text_input) dataframe = dataframe.iloc[:session.slider_count] st.data_editor( dataframe, column_config={ "link": st.column_config.LinkColumn( "link", ) }, hide_index=False, use_container_width=True ) # with st.form(key="spotiform"): # st.form_submit_button(on_click=authenticate_spotify, args=(session.access_url, )) # st.markdown(session.access_url)