Spaces:
Runtime error
Runtime error
Add a chat tab
Browse files- gradio_app.py +106 -21
gradio_app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
-
import random
|
2 |
import os
|
|
|
|
|
3 |
|
4 |
import gradio as gr
|
5 |
import torch
|
@@ -9,6 +10,7 @@ import logging
|
|
9 |
logger = logging.getLogger()
|
10 |
logger.addHandler(logging.StreamHandler())
|
11 |
|
|
|
12 |
HF_AUTH_TOKEN = os.environ.get("HF_AUTH_TOKEN", None)
|
13 |
DEVICE = os.environ.get("DEVICE", "cpu") # cuda:0
|
14 |
if DEVICE != "cpu" and not torch.cuda.is_available():
|
@@ -60,7 +62,10 @@ Este modelo ha sido entrenado con [Mesh Transformer JAX](https://github.com/king
|
|
60 |
"""
|
61 |
|
62 |
FOOTER = """
|
63 |
-
|
|
|
|
|
|
|
64 |
""".strip()
|
65 |
|
66 |
EXAMPLES = [
|
@@ -74,6 +79,13 @@ Pregunta: ¿Quién cuidaba del hogar los dioses?
|
|
74 |
Respuesta:""",
|
75 |
]
|
76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
class Normalizer:
|
78 |
def remove_repetitions(self, text):
|
79 |
"""Remove repetitions"""
|
@@ -124,8 +136,6 @@ class TextGeneration:
|
|
124 |
def generate(self, text, generation_kwargs):
|
125 |
max_length = len(self.tokenizer(text)["input_ids"]) + generation_kwargs["max_length"]
|
126 |
generation_kwargs["max_length"] = min(max_length, self.model.config.n_positions)
|
127 |
-
# generation_kwargs["num_return_sequences"] = 1
|
128 |
-
# generation_kwargs["return_full_text"] = False
|
129 |
generated_text = None
|
130 |
if text:
|
131 |
for _ in range(10):
|
@@ -196,6 +206,64 @@ def expand_with_gpt(hidden, text, max_length, top_k, top_p, temperature, do_samp
|
|
196 |
}
|
197 |
return generator.generate(hidden or text, generation_kwargs)
|
198 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
with gr.Blocks() as demo:
|
200 |
gr.Markdown(HEADER)
|
201 |
with gr.Row():
|
@@ -247,24 +315,41 @@ with gr.Blocks() as demo:
|
|
247 |
# help="Si eliminar o no las palabras repetidas y recortar las últimas frases sin terminar.",
|
248 |
)
|
249 |
with gr.Column():
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
267 |
gr.Markdown(FOOTER)
|
268 |
|
|
|
|
|
269 |
demo.launch()
|
270 |
# gr.Interface(complete_with_gpt, inputs=[textbox, max_length, top_k, top_p, temperature, do_sample, do_clean], outputs=[hidden, output]).launch()
|
|
|
|
|
1 |
import os
|
2 |
+
import random
|
3 |
+
import string
|
4 |
|
5 |
import gradio as gr
|
6 |
import torch
|
|
|
10 |
logger = logging.getLogger()
|
11 |
logger.addHandler(logging.StreamHandler())
|
12 |
|
13 |
+
DEBUG = os.environ.get("DEBUG", "false")[0] in "ty1"
|
14 |
HF_AUTH_TOKEN = os.environ.get("HF_AUTH_TOKEN", None)
|
15 |
DEVICE = os.environ.get("DEVICE", "cpu") # cuda:0
|
16 |
if DEVICE != "cpu" and not torch.cuda.is_available():
|
|
|
62 |
"""
|
63 |
|
64 |
FOOTER = """
|
65 |
+
<div align=center>
|
66 |
+
Para más información, visite el repositorio del modelo: <a href="https://huggingface.co/bertin-project/bertin-gpt-j-6B">BERTIN-GPT-J-6B</a>.
|
67 |
+
<img src="https://visitor-badge.glitch.me/badge?page_id=spaces/bertin-project/bertin-gpt-j-6B"/>
|
68 |
+
<div align=center>
|
69 |
""".strip()
|
70 |
|
71 |
EXAMPLES = [
|
|
|
79 |
Respuesta:""",
|
80 |
]
|
81 |
|
82 |
+
AGENT = "BERTIN"
|
83 |
+
USER = "ENTREVISTADOR"
|
84 |
+
CONTEXT = """La siguiente conversación es un extracto de una entrevista a {AGENT} celebrada en Madrid para Radio Televisión Española:
|
85 |
+
|
86 |
+
{USER}: Bienvenido, {AGENT}. Un placer tenerlo hoy con nosotros.
|
87 |
+
{AGENT}: Gracias. El placer es mío."""
|
88 |
+
|
89 |
class Normalizer:
|
90 |
def remove_repetitions(self, text):
|
91 |
"""Remove repetitions"""
|
|
|
136 |
def generate(self, text, generation_kwargs):
|
137 |
max_length = len(self.tokenizer(text)["input_ids"]) + generation_kwargs["max_length"]
|
138 |
generation_kwargs["max_length"] = min(max_length, self.model.config.n_positions)
|
|
|
|
|
139 |
generated_text = None
|
140 |
if text:
|
141 |
for _ in range(10):
|
|
|
206 |
}
|
207 |
return generator.generate(hidden or text, generation_kwargs)
|
208 |
|
209 |
+
def chat_with_gpt(user, agent, context, user_message, history, max_length, top_k, top_p, temperature, do_sample, do_clean):
|
210 |
+
# agent = AGENT
|
211 |
+
# user = USER
|
212 |
+
generation_kwargs = {
|
213 |
+
"max_length": 25,
|
214 |
+
"top_k": top_k,
|
215 |
+
"top_p": top_p,
|
216 |
+
"temperature": temperature,
|
217 |
+
"do_sample": do_sample,
|
218 |
+
"do_clean": do_clean,
|
219 |
+
# "num_return_sequences": 1,
|
220 |
+
# "return_full_text": False,
|
221 |
+
}
|
222 |
+
message = user_message.split(" ", 1)[0].capitalize() + " " + user_message.split(" ", 1)[-1]
|
223 |
+
history = history or [] #[(f"{user}: Bienvenido. Encantado de tenerle con nosotros.", f"{agent}: Un placer, muchas gracias por la invitación.")]
|
224 |
+
context = context.format(USER=user or USER, AGENT=agent or AGENT).strip()
|
225 |
+
if context[-1] not in ".:":
|
226 |
+
context += "."
|
227 |
+
context_length = len(context.split())
|
228 |
+
history_take = 0
|
229 |
+
history_context = "\n".join(f"{user}: {history_message.capitalize()}.\n{agent}: {history_response}." for history_message, history_response in history[-len(history) + history_take:])
|
230 |
+
while len(history_context.split()) > generator.model.config.n_positions - (generation_kwargs["max_length"] + context_length):
|
231 |
+
history_take += 1
|
232 |
+
history_context = "\n".join(f"{user}: {history_message.capitalize()}.\n{agent}: {history_response}." for history_message, history_response in history[-len(history) + history_take:])
|
233 |
+
if history_take >= generator.model.config.n_positions:
|
234 |
+
break
|
235 |
+
context += history_context
|
236 |
+
for _ in range(5):
|
237 |
+
response = generator.generate(f"{context}\n\n{user}: {message}.\n", generation_kwargs)[1]
|
238 |
+
if DEBUG:
|
239 |
+
print("\n-----" + response + "-----\n")
|
240 |
+
response = response.split("\n")[-1]
|
241 |
+
if agent in response and response.split(agent)[-1]:
|
242 |
+
response = response.split(agent)[-1]
|
243 |
+
if user in response and response.split(user)[-1]:
|
244 |
+
response = response.split(user)[-1]
|
245 |
+
if response[0] in string.punctuation:
|
246 |
+
response = response[1:].strip()
|
247 |
+
if response.strip().startswith(f"{user}: {message}"):
|
248 |
+
response = response.strip().split(f"{user}: {message}")[-1]
|
249 |
+
if response.replace(".", "").strip() and message.replace(".", "").strip() != response.replace(".", "").strip():
|
250 |
+
break
|
251 |
+
if DEBUG:
|
252 |
+
print()
|
253 |
+
print("CONTEXT:")
|
254 |
+
print(context)
|
255 |
+
print()
|
256 |
+
print("MESSAGE")
|
257 |
+
print(message)
|
258 |
+
print()
|
259 |
+
print("RESPONSE:")
|
260 |
+
print(response)
|
261 |
+
if not response.strip():
|
262 |
+
response = random.choice(["No sé muy bien cómo contestar a eso.", "No estoy seguro.", "Prefiero no contestar.", "Ni idea.", "¿Podemos cambiar de tema?"])
|
263 |
+
history.append((user_message, response))
|
264 |
+
return history, history, ""
|
265 |
+
|
266 |
+
|
267 |
with gr.Blocks() as demo:
|
268 |
gr.Markdown(HEADER)
|
269 |
with gr.Row():
|
|
|
315 |
# help="Si eliminar o no las palabras repetidas y recortar las últimas frases sin terminar.",
|
316 |
)
|
317 |
with gr.Column():
|
318 |
+
with gr.Tabs():
|
319 |
+
with gr.TabItem("Generar"):
|
320 |
+
textbox = gr.Textbox(label="Texto", placeholder="Escriba algo (o seleccione un ejemplo) y pulse 'Generar'...", lines=8)
|
321 |
+
examples = gr.Dropdown(label="Ejemplos", choices=EXAMPLES, value=None, type="value")
|
322 |
+
hidden = gr.Textbox(visible=False, show_label=False)
|
323 |
+
with gr.Box():
|
324 |
+
# output = gr.Markdown()
|
325 |
+
output = gr.HighlightedText(label="Resultado", combine_adjacent=True, color_map={"BERTIN": "green", "ERROR": "red"})
|
326 |
+
with gr.Row():
|
327 |
+
generate_btn = gr.Button("Generar")
|
328 |
+
generate_btn.click(complete_with_gpt, inputs=[textbox, max_length, top_k, top_p, temperature, do_sample, do_clean], outputs=[textbox, hidden, output])
|
329 |
+
expand_btn = gr.Button("Añadir")
|
330 |
+
expand_btn.click(expand_with_gpt, inputs=[hidden, textbox, max_length, top_k, top_p, temperature, do_sample, do_clean], outputs=[textbox, hidden, output])
|
331 |
+
|
332 |
+
edit_btn = gr.Button("Editar", variant="secondary")
|
333 |
+
edit_btn.click(lambda x: (x, "", []), inputs=[hidden], outputs=[textbox, hidden, output])
|
334 |
+
clean_btn = gr.Button("Borrar", variant="secondary")
|
335 |
+
clean_btn.click(lambda: ("", "", [], ""), inputs=[], outputs=[textbox, hidden, output, examples])
|
336 |
+
examples.change(lambda x: x, inputs=[examples], outputs=[textbox])
|
337 |
+
|
338 |
+
with gr.TabItem("Charlar") as tab_chat:
|
339 |
+
tab_chat.select(lambda: 25, inputs=[], outputs=[max_length])
|
340 |
+
context = gr.Textbox(label="Contexto", value=CONTEXT, lines=5)
|
341 |
+
with gr.Row():
|
342 |
+
agent = gr.Textbox(label="Agente", value=AGENT)
|
343 |
+
user = gr.Textbox(label="Usuario", value=USER)
|
344 |
+
history = gr.Variable(default_value=[])
|
345 |
+
chatbot = gr.Chatbot(color_map=("green", "gray"))
|
346 |
+
with gr.Row():
|
347 |
+
message = gr.Textbox(placeholder="Escriba aquí su mensaje y pulse 'Enviar'", show_label=False)
|
348 |
+
chat_btn = gr.Button("Enviar")
|
349 |
+
chat_btn.click(chat_with_gpt, inputs=[agent, user, context, message, history, max_length, top_k, top_p, temperature, do_sample, do_clean], outputs=[chatbot, history, message])
|
350 |
gr.Markdown(FOOTER)
|
351 |
|
352 |
+
|
353 |
+
|
354 |
demo.launch()
|
355 |
# gr.Interface(complete_with_gpt, inputs=[textbox, max_length, top_k, top_p, temperature, do_sample, do_clean], outputs=[hidden, output]).launch()
|