File size: 14,505 Bytes
c1c1923
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
---
{{card_data}}
---

{% set lm_task_entries = {
    'text-generation': {
        'direct_use': "The model can be used for text generation.", 
        'downstream_use': "To learn more about this task and potential downstream uses, see the Hugging Face [text generation docs](https://huggingface.co/tasks/text-generation)", 
        'misuse': "The model was not trained to be factual or true representations of people or events, and therefore using the models to generate such content is out-of-scope for the abilities of this model."
    },
    'question-answering': {
        'direct_use': "The model can be used for question answering.", 
        'downstream_use': "Potential types of question answering include extractive QA, open generative QA, and closed generative QA. To learn more about this task and potential downstream uses, see the Hugging Face [question answering docs](https://huggingface.co/tasks/question-answering)", 
        'misuse': "The model was not trained to be factual or true representations of people or events, and therefore using the models to generate such content is out-of-scope for the abilities of this model."
    },
    'fill-mask': {
        'direct_use': "The model can be used for masked language modeling.", 
        'downstream_use': "Masked language modeling are sometimes used to train large models for domain-specific problems. To learn more about this task and potential downstream uses, see the Hugging Face [fill mask docs](https://huggingface.co/tasks/fill-mask)", 
        'misuse': "The model was not trained to be factual or true representations of people or events, and therefore using the models to generate such content is out-of-scope for the abilities of this model."
    },
    'sentence_similarity': {
        'direct_use': "The model can be used for sentence similarity, the task of determining how similar two texts are.", 
        'downstream_use': "Potential downstream use cases may include information retreival and clustering or grouping. To learn more about sentence similarity and potential downstream uses, see the Hugging Face [sentence similarity docs](https://huggingface.co/tasks/sentence-similarity)", 
        'misuse': ""
    },
    'summarization': {
        'direct_use': "The model can be used for summarization.", 
        'downstream_use': "To learn more about summarization and potential downstream uses, see the Hugging Face [summarization docs](https://huggingface.co/tasks/summarization).", 
        'misuse': "The model was not trained to be factual or true representations of people or events, and therefore using the models to generate such content is out-of-scope for the abilities of this model."
    },
    'text_classification': {
        'direct_use': "The model can be used for text classification, the task of assigning a label or class to a given text.", 
        'downstream_use': "Potential downstream use cases include sentiment analysis, natural language inference, and assessing grammatical correctness. To learn more about text classification and other potential downstream uses, see the Hugging Face [text classification docs](https://huggingface.co/tasks/text-classification).", 
        'misuse': ""
    },
    'token_classification': {
        'direct_use': "The model can be used for token classification, a natural language understanding task in which a label is assigned to some tokens in a text.", 
        'downstream_use': "Potential downstream use cases include Named Entity Recognition (NER) and Part-of-Speech (PoS) tagging. To learn more about token classification and other potential downstream use cases, see the Hugging Face [token classification docs](https://huggingface.co/tasks/token-classification).", 
        'misuse': ""
    },
    'translation': {
        'direct_use': "The model can be used for translation, the task of converting text from one language to another.", 
        'downstream_use': "Potential downstream use cases include use cases that leverage conversational agents across different languages. To learn more about translation and other potential downstream use cases, see the Hugging Face [translation docs](https://huggingface.co/tasks/translation).", 
        'misuse': ""
    },
} %}

{% set task_list = [
    'text_generation', 
    'question_answering', 
    'fill_mask', 
    'sentence_similarity', 
    'summarization', 
    'text_classification',
    'token_classification', 
    'translation'
] %}


# Model Card for {{ model_id }}

<!-- Provide a quick summary of what the model is/does. [Optional] -->
{{ the_model_description }}

{% if model_card_user == "policymaker" %}
<details>
<summary> Click to expand policymaker version of model card </summary>

# Table of Contents 

1. [Model Details](#model-details)
2. [Uses](#uses)
3. [Bias, Risks, and Limitations](#bias-risks-and-limitations)
4. [Model Examination](#model-examination)
5. [Environmental Impact](#environmental-impact)
6. [Citation](#citation)
7. [Glossary](#glossary-optional)
8. [More Information](#more-information-optional)
9. [Model Card Authors](#model-card-authors-optional)
10. [Model Card Contact](#model-card-contact)

</details>

{% endif %}


#  Table of Contents

- [Model Card for {{ model_id }}](#model-card-for--model_id-)
- [Table of Contents](#table-of-contents)
- [Table of Contents](#table-of-contents-1)
- [Model Details](#model-details)
  - [Model Description](#model-description)
- [Uses](#uses)
  - [Direct Use](#direct-use)
  - [Downstream Use [Optional]](#downstream-use-optional)
  - [Out-of-Scope Use](#out-of-scope-use)
- [Bias, Risks, and Limitations](#bias-risks-and-limitations)
  - [Recommendations](#recommendations)
- [Training Details](#training-details)
  - [Training Data](#training-data)
  - [Training Procedure](#training-procedure)
    - [Preprocessing](#preprocessing)
    - [Speeds, Sizes, Times](#speeds-sizes-times)
- [Evaluation](#evaluation)
  - [Testing Data, Factors & Metrics](#testing-data-factors--metrics)
    - [Testing Data](#testing-data)
    - [Factors](#factors)
    - [Metrics](#metrics)
  - [Results](#results)
- [Model Examination](#model-examination)
- [Environmental Impact](#environmental-impact)
- [Technical Specifications [optional]](#technical-specifications-optional)
  - [Model Architecture and Objective](#model-architecture-and-objective)
  - [Compute Infrastructure](#compute-infrastructure)
    - [Hardware](#hardware)
    - [Software](#software)
- [Citation](#citation)
- [Glossary [optional]](#glossary-optional)
- [More Information [optional]](#more-information-optional)
- [Model Card Authors [optional]](#model-card-authors-optional)
- [Model Card Contact](#model-card-contact)
- [How to Get Started with the Model](#how-to-get-started-with-the-model)


# Model Details

## Model Description

<!-- Provide a longer summary of what this model is/does. -->
{{ the_model_description }}

- **Developed by:** {{ developers | join(', ') | default("More information needed", true)}}
- **Shared by [Optional]:** {{ shared_by | join(', ') | default("More information needed", true)}}
- **Model type:** {{ model_type | default("Language model", true)}}
- **Language(s) (NLP):** {{ language | join(', ') | default("More information needed", true)}}
- **License:** {{ model_license | default("More information needed", true)}}
- **Parent Model:** {{ "  [Parent Model]({0})".format(repo_link) if parent_model_link else "More information needed"}}
- **Resources for more information:** {{ more_resources | default("More information needed", true)}}
{{ "    - [GitHub Repo]({0})".format(repo_link) if repo_link}}
{{ "    - [Associated Paper]({0})".format(paper_link) if paper_link }}

# Uses

<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->

## Direct Use

<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
<!-- If the user enters content, print that. If not, but they enter a task in the list, use that. If neither, say "more info needed." -->
{% if direct_use is defined %}
{{ direct_use }}
{% elif model_task in task_list %}
{{ lm_task_entries[model_task]['direct_use'] }}
{% else %}
More information needed.
{% endif %}

## Downstream Use [Optional]

<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
<!-- If the user enters content, print that. If not, but they enter a task in the list, use that. If neither, say "more info needed." -->
{% if downstream_use is defined %} 
{{ downstream_use }}
{% elif model_task in task_list %} 
{{ lm_task_entries[model_task]['downstream_use'] }}
{% else %} 
More information needed.
{% endif %}

## Out-of-Scope Use

<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
<!-- If the user enters content, print that. If not, but they enter a task in the list, use that. If neither, say "more info needed." -->
{% if out_of_scope_use is defined %}
{{ out_of_scope_use }}
{% elif model_task in task_list %}
The model should not be used to intentionally create hostile or alienating environments for people. {{ lm_task_entries[model_task]['misuse'] }}
{% else %}
More information needed.
{% endif %}

# Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->
{% if bias_risks_limiations is defined %}
{{ bias_risks_limitations }}
{% else %}
Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Predictions generated by the model may include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups.
{% endif %}

## Recommendations

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->

{% if bias_recommendations is defined %}
{{ bias_recommendations }}
{% else %}
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recomendations.
{% endif %}

# Training Details

## Training Data

<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->

{{ training_data | default("More information on training data needed", true)}}
{{ "See the associated [dataset card]({0}) for further details.".format(training_datacard_link) if training_data_card_link }}

## Training Procedure

<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->

### Preprocessing

{{ preprocessing | default("More information needed", true)}}

### Speeds, Sizes, Times

<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->

{{ speeds_sizes_times | default("More information needed", true)}}
 
# Evaluation

<!-- This section describes the evaluation protocols and provides the results. -->

## Testing Data, Factors & Metrics

### Testing Data

<!-- This should link to a Data Card if possible. -->

{{ testing_data | default("More information needed", true)}}
{{ "See the associated [dataset card]({0}) for further details.".format(testing_datacard_link) if testing_data_card_link }}

### Factors

<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->

{{ testing_factors | default("More information needed", true)}}

### Metrics

<!-- These are the evaluation metrics being used, ideally with a description of why. -->

{{ testing_metrics | default("More information needed", true)}}

## Results 

{{ results | default("More information needed", true)}}

# Model Examination

{{ model_examination | default("More information needed", true)}}

# Environmental Impact

<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->

Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).

- **Hardware Type:** {{ hardware | default("More information needed", true)}}
- **Hours used:** {{ hours_used | default("More information needed", true)}}
- **Cloud Provider:** {{ cloud_provider | default("More information needed", true)}}
- **Compute Region:** {{ cloud_region | default("More information needed", true)}}
- **Carbon Emitted:** {{ co2_emitted | default("More information needed", true)}}

# Technical Specifications [optional]

## Model Architecture and Objective

{{ model_specs | default("More information needed", true)}}

## Compute Infrastructure

{{ compute_infrastructure | default("More information needed", true)}}

### Hardware

{{ hardware | default("More information needed", true)}}

### Software

{{ software | default("More information needed", true)}}

# Citation

<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->

**BibTeX:**

{{ citation_bibtex | default("More information needed", true)}}

**APA:**

{{ citation_apa | default("More information needed", true)}}

# Glossary [optional]

<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->

{{ glossary | default("More information needed", true)}}

# More Information [optional]

{{ more_information | default("More information needed", true)}}

# Model Card Authors [optional]

<!-- This section provides another layer of transparency and accountability. Whose views is this model card representing? How many voices were included in its construction? Etc. -->

{{ model_card_authors | join(', ') | default("More information needed", true)}}

# Model Card Contact

{{ model_card_contact | join(', ') | default("More information needed", true)}}

# How to Get Started with the Model

Use the code below to get started with the model.

<details>
<summary> Click to expand </summary>

{{ get_started_code | default("More information needed", true)}}

</details>