File size: 6,875 Bytes
69aad3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efee337
69aad3b
 
 
 
 
 
 
 
 
 
 
 
 
efee337
 
 
69aad3b
efee337
 
69aad3b
efee337
69aad3b
 
 
 
efee337
69aad3b
efee337
69aad3b
efee337
69aad3b
 
 
 
efee337
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69aad3b
efee337
 
 
 
 
 
69aad3b
 
efee337
69aad3b
 
a3a9ed2
 
69aad3b
 
1605348
efee337
b6e2b19
 
 
 
 
 
 
 
 
 
 
69aad3b
efee337
69aad3b
 
 
 
 
efee337
69aad3b
9efa4bb
69aad3b
 
 
9efa4bb
69aad3b
9efa4bb
efee337
69aad3b
efee337
69aad3b
 
efee337
 
69aad3b
 
efee337
 
69aad3b
efee337
69aad3b
 
 
 
efee337
69aad3b
 
 
 
 
 
efee337
69aad3b
 
 
 
efee337
69aad3b
efee337
69aad3b
efee337
69aad3b
efee337
69aad3b
 
 
 
 
 
 
efee337
69aad3b
 
 
 
 
 
 
 
 
 
 
 
 
efee337
69aad3b
efee337
a3a9ed2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import urllib.request
import fitz
import re
import numpy as np
import openai
import gradio as gr
import os
from sklearn.neighbors import NearestNeighbors

def download_pdf(url, output_path):
    urllib.request.urlretrieve(url, output_path)

def preprocess(text):
    text = text.replace('\n', ' ')
    text = re.sub('\s+', ' ', text)
    return text

def pdf_to_text(path, start_page=1, end_page=None):
    doc = fitz.open(path)
    total_pages = doc.page_count

    if end_page is None:
        end_page = total_pages

    text_list = []

    for i in range(start_page-1, end_page):
        text = doc.load_page(i).get_text("text")
        text = preprocess(text)
        text_list.append(text)

    doc.close()
    return text_list

def text_to_chunks(texts, word_length=150, start_page=1):
    text_toks = [t.split(' ') for t in texts]
    page_nums = []
    chunks = []

    for idx, words in enumerate(text_toks):
        for i in range(0, len(words), word_length):
            chunk = words[i:i+word_length]
            if (i+word_length) > len(words) and (len(chunk) < word_length) and (
                len(text_toks) != (idx+1)):
                text_toks[idx+1] = chunk + text_toks[idx+1]
                continue
            chunk = ' '.join(chunk).strip()
            chunk = f'[{idx+start_page}]' + ' ' + '"' + chunk + '"'
            chunks.append(chunk)
    return chunks

class SemanticSearch:

    def __init__(self, openAI_key):
        self.openAI_key = openAI_key
        self.fitted = False

    def fit(self, data, n_neighbors=5):
        self.data = data
        self.embeddings = self.get_text_embedding(data)
        n_neighbors = min(n_neighbors, len(self.embeddings))
        self.nn = NearestNeighbors(n_neighbors=n_neighbors)
        self.nn.fit(self.embeddings)
        self.fitted = True

    def __call__(self, text, return_data=True):
        inp_emb = self.get_text_embedding([text])
        neighbors = self.nn.kneighbors(inp_emb, return_distance=False)[0]

        if return_data:
            return [self.data[i] for i in neighbors]
        else:
            return neighbors

    def get_text_embedding(self, texts):
        prompt = "Embed the following texts:"
        for text in texts:
            prompt += f"\n\n{text}"

        openai.api_key = self.openAI_key
        completions = openai.Completion.create(
            engine="text-davinci-003",
            prompt=prompt,
            max_tokens=len(texts) * 128,
            n=1,
            stop=None,
            temperature=0.5,
        )

        message = completions.choices[0].text
        embeddings = []
        for emb_str in message.split("\n"):
            emb_str = emb_str.strip()
            if emb_str:
                emb = np.array([float(x) for x in emb_str.split()])
                embeddings.append(emb)
        embeddings = np.array(embeddings)
        return embeddings

def load_recommender(path, openAI_key, start_page=1):
    global recommender
    texts = pdf_to_text(path, start_page=start_page)
    chunks = text_to_chunks(texts, start_page=start_page)
    recommender = SemanticSearch()
    recommender.fit(chunks)
    return 'Corpus Loaded.'

def generate_text(openAI_key, prompt, engine="text-davinci-003"):
    openai.api_key = openAI_key
    completions = openai.Completion.create(
        engine=engine,
        prompt=prompt,
        max_tokens=512,
        n=1,
        stop=None,
        temperature=0.7,
    )
    message = completions.choices[0].text
    return message

def generate_answer(question, openAI_key):
    topn_chunks = recommender(question)
    prompt = ""
    prompt += 'search results:\n\n'
    for c in topn_chunks:
        prompt += c + '\n\n'

    prompt += "Instructions: Compose a comprehensive reply to the query using the search results given. "\
              "Cite each reference using [ Page Number] notation (every result has this number at the beginning). "\
              "Citation should be done at the end of each sentence. If the search results mention multiple subjects "\
              "with the same name, create separate answers for each. Only include information found in the results and "\
              "don't add any additional information. Make sure the answer is correct and don't output false content. "\
              "If the text does not relate to the query, simply state 'Text Not Found in PDF'. Ignore outlier "\
              "search results which has nothing to do with the question. Only answer what is asked. The "\
              "answer should be short and concise. Answer step-by-step. \n\nQuery: {question}\nAnswer: "

    prompt += f"Query: {question}\nAnswer:"
    answer = generate_text(openAI_key, prompt, "text-davinci-003")
    return answer

def question_answer(url, file, question, openAI_key):
    if openAI_key.strip() == '':
        return '[ERROR]: Please enter you Open AI Key. Get your key here : https://platform.openai.com/account/api-keys'
    if url.strip() == '' and file == None:
        return '[ERROR]: Both URL and PDF is empty. Provide at least one.'

    if url.strip() != '' and file != None:
        return '[ERROR]: Both URL and PDF is provided. Please provide only one (either URL or PDF).'

    if url.strip() != '':
        glob_url = url
        download_pdf(glob_url, 'corpus.pdf')
        load_recommender('corpus.pdf', openAI_key)

    else:
        old_file_name = file.name
        file_name = file.name
        file_name = file_name[:-12] + file_name[-4:]
        os.rename(old_file_name, file_name)
        load_recommender(file_name, openAI_key)

    if question.strip() == '':
        return '[ERROR]: Question field is empty'

    return generate_answer(question, openAI_key)

recommender = None

# Add your Gradio UI code here
title = 'PDF GPT'
description = """With PDF GPT, you can chat with your PDF files/books and get precise answers."""

with gr.Blocks() as demo:

    gr.Markdown(f'<center><h1>{title}</h1></center>')
    gr.Markdown(description)

    with gr.Row():

        with gr.Group():
            gr.Markdown(f'<p style="text-align:center">Get your Open AI API key <a href="https://platform.openai.com/account/api-keys">here</a></p>')
            openAI_key=gr.Textbox(label='Enter your OpenAI API key here')
            url = gr.Textbox(label='Enter PDF URL here')
            gr.Markdown("<center><h4>OR<h4></center>")
            file = gr.File(label='Upload your PDF/ Research Paper / Book here', file_types=['.pdf'])
            question = gr.Textbox(label='Enter your question here')
            btn = gr.Button(value='Submit')
            btn.style(full_width=True)

        with gr.Group():
            answer = gr.Textbox(label='The answer to your question is :')

        btn.click(question_answer, inputs=[url, file, question, openAI_key], outputs=[answer])

demo.launch()
recommender = SemanticSearch(openAI_key)