File size: 2,795 Bytes
dea4744
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
"""Model-related code and constants."""

import dataclasses
import os
import re

import PIL.Image

# pylint: disable=g-bad-import-order
import gradio_helpers
import paligemma_bv


ORGANIZATION = 'google'
BASE_MODELS = [
    ('paligemma-3b-mix-224-jax', 'paligemma-3b-mix-224'),
    ('paligemma-3b-mix-448-jax', 'paligemma-3b-mix-448'),
]
MODELS = {
    **{
        model_name: (
            f'{ORGANIZATION}/{repo}',
            f'{model_name}.bf16.npz',
            'bfloat16',  # Model repo revision.
        )
        for repo, model_name in BASE_MODELS
    },
}

MODELS_INFO = {
    'paligemma-3b-mix-224': (
        'JAX/FLAX PaliGemma 3B weights, finetuned with 224x224 input images and 256 token input/output '
        'text sequences on a mixture of downstream academic datasets. The models are available in float32, '
        'bfloat16 and float16 format for research purposes only.'
    ),
    'paligemma-3b-mix-448': (
        'JAX/FLAX PaliGemma 3B weights, finetuned with 448x448 input images and 512 token input/output '
        'text sequences on a mixture of downstream academic datasets. The models are available in float32, '
        'bfloat16 and float16 format for research purposes only.'
    ),
}

MODELS_RES_SEQ = {
    'paligemma-3b-mix-224': (224, 256),
    'paligemma-3b-mix-448': (448, 512),
}

# "CPU basic" has 16G RAM, "T4 small" has 15 GB RAM.
# Below value should be smaller than "available RAM - one model".
# A single bf16 is about 5860 MB.
MAX_RAM_CACHE = int(float(os.environ.get('RAM_CACHE_GB', '0')) * 1e9)

config = paligemma_bv.PaligemmaConfig(
    ckpt='',  # will be set below
    res=224,
    text_len=64,
    tokenizer='gemma(tokensets=("loc", "seg"))',
    vocab_size=256_000 + 1024 + 128,
)


def get_cached_model(
    model_name: str,
) -> tuple[paligemma_bv.PaliGemmaModel, paligemma_bv.ParamsCpu]:
  """Returns model and params, using RAM cache."""
  res, seq = MODELS_RES_SEQ[model_name]
  model_path = gradio_helpers.get_paths()[model_name]
  config_ = dataclasses.replace(config, ckpt=model_path, res=res, text_len=seq)
  model, params_cpu = gradio_helpers.get_memory_cache(
      config_,
      lambda: paligemma_bv.load_model(config_),
      max_cache_size_bytes=MAX_RAM_CACHE,
  )
  return model, params_cpu


def generate(
    model_name: str, sampler: str, image: PIL.Image.Image, prompt: str
) -> str:
  """Generates output with specified `model_name`, `sampler`."""
  model, params_cpu = get_cached_model(model_name)
  batch = model.shard_batch(model.prepare_batch([image], [prompt]))
  with gradio_helpers.timed('sharding'):
    params = model.shard_params(params_cpu)
  with gradio_helpers.timed('computation', start_message=True):
    tokens = model.predict(params, batch, sampler=sampler)
  return model.tokenizer.to_str(tokens[0])