Spaces:
Restarting
on
CPU Upgrade
Restarting
on
CPU Upgrade
import os | |
import logging | |
import time | |
import datetime | |
import gradio as gr | |
from threading import Thread | |
import datasets | |
from huggingface_hub import snapshot_download, WebhooksServer, WebhookPayload, RepoCard | |
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns | |
from apscheduler.schedulers.background import BackgroundScheduler | |
# Start ephemeral Spaces on PRs (see config in README.md) | |
from gradio_space_ci.webhook import IS_EPHEMERAL_SPACE, SPACE_ID, configure_space_ci | |
from src.display.about import ( | |
CITATION_BUTTON_LABEL, | |
CITATION_BUTTON_TEXT, | |
# INTRODUCTION_TEXT, | |
TITLE, | |
ABOUT_TEXT, | |
SUBMISSION_TEXT_3, | |
) | |
from src.display.css_html_js import custom_css | |
from src.display.utils import ( | |
COLS, | |
EVAL_COLS, | |
EVAL_TYPES, | |
AutoEvalColumn, | |
fields, | |
EvalQueueColumn | |
) | |
from src.envs import ( | |
API, | |
EVAL_REQUESTS_PATH, | |
RESULT_REPO, | |
DATA_VERSION, | |
DATA_REPO, | |
HARD_RESULT_REPO, | |
ELO_REPO, | |
HARD_ELO_REPO, | |
SOLVE_REPO, | |
HARD_SOLVE_REPO, | |
HF_TOKEN, | |
QUEUE_REPO, | |
REPO_ID, | |
VOTES_REPO, | |
VOTES_PATH, | |
HF_HOME, | |
) | |
from src.populate import get_evaluation_queue_df, get_leaderboard_df | |
from src.execute import generate_command, is_running, lock, stream_logs, find_result_file | |
from src.tools.plots import plot_elo_mle, plot_solve_rate | |
# from src.voting.vote_system import VoteManager, run_scheduler | |
# Configure logging | |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") | |
# Start ephemeral Spaces on PRs (see config in README.md) | |
from gradio_space_ci.webhook import IS_EPHEMERAL_SPACE, SPACE_ID, configure_space_ci | |
# Convert the environment variable "LEADERBOARD_FULL_INIT" to a boolean value, defaulting to True if the variable is not set. | |
# This controls whether a full initialization should be performed. | |
DO_FULL_INIT = True # os.getenv("LEADERBOARD_FULL_INIT", "True") == "True" | |
NEW_DATA_ON_LEADERBOARD = True | |
LEADERBOARD_DF = None | |
HARD_LEADERBOARD_DF = None | |
ELO_TASK_DF = None | |
ELO_BENCH_DF = None | |
HARD_ELO_TASK_DF = None | |
HARD_ELO_BENCH_DF = None | |
COMPLETE_SOLVE_DF = None | |
INSTRUCT_SOLVE_DF = None | |
HARD_COMPLETE_SOLVE_DF = None | |
HARD_INSTRUCT_SOLVE_DF = None | |
DATA = datasets.load_dataset(DATA_REPO, "default", cache_dir=HF_HOME, split=DATA_VERSION, | |
verification_mode="no_checks") | |
def filter_data(data, keyword): | |
if not keyword: | |
return data | |
filtered_data = [item for item in data if keyword.lower() in item['complete_prompt'].lower()] | |
return filtered_data | |
def update_display(search_keyword, index, show_test): | |
filtered_data = filter_data(DATA, search_keyword) | |
if not filtered_data: | |
return ["No data available. Check the search criteria."] + [""] * 4 + [0, gr.update(maximum=0, value=0)] | |
max_index = len(filtered_data) - 1 | |
index = min(max(0, index), max_index) | |
task_id = filtered_data[index]['task_id'] | |
snippet1 = filtered_data[index]['complete_prompt'] | |
snippet2 = filtered_data[index]['instruct_prompt'] | |
# snippet3 = filtered_data[index]['canonical_solution'] if show_solution else "" | |
snippet4 = filtered_data[index]['test'] if show_test else "" | |
return [ | |
task_id, | |
snippet1, | |
snippet2, | |
# snippet3, | |
snippet4, | |
len(filtered_data), | |
gr.update(maximum=max_index, value=index) | |
] | |
def restart_space(): | |
API.restart_space(repo_id=REPO_ID, token=HF_TOKEN) | |
def time_diff_wrapper(func): | |
def wrapper(*args, **kwargs): | |
start_time = time.time() | |
result = func(*args, **kwargs) | |
end_time = time.time() | |
diff = end_time - start_time | |
logging.info(f"Time taken for {func.__name__}: {diff} seconds") | |
return result | |
return wrapper | |
def download_dataset(repo_id, local_dir, repo_type="dataset", max_attempts=3, backoff_factor=1.5): | |
"""Download dataset with exponential backoff retries.""" | |
attempt = 0 | |
while attempt < max_attempts: | |
try: | |
logging.info(f"Downloading {repo_id} to {local_dir}") | |
snapshot_download( | |
repo_id=repo_id, | |
local_dir=local_dir, | |
repo_type=repo_type, | |
tqdm_class=None, | |
etag_timeout=30, | |
max_workers=8, | |
) | |
logging.info("Download successful") | |
return | |
except Exception as e: | |
wait_time = backoff_factor**attempt | |
logging.error(f"Error downloading {repo_id}: {e}, retrying in {wait_time}s") | |
time.sleep(wait_time) | |
attempt += 1 | |
raise Exception(f"Failed to download {repo_id} after {max_attempts} attempts") | |
def get_latest_data_leaderboard( | |
leaderboard_initial_df = None, | |
hard_leaderboard_initial_df = None, | |
elo_task_df = None, | |
elo_bench_df = None, | |
hard_elo_task_df = None, | |
hard_elo_bench_df = None, | |
complete_solve_df = None, | |
instruct_solve_df = None, | |
hard_complete_solve_df = None, | |
hard_instruct_solve_df = None | |
): | |
global NEW_DATA_ON_LEADERBOARD | |
global LEADERBOARD_DF | |
global HARD_LEADERBOARD_DF | |
global ELO_TASK_DF | |
global ELO_BENCH_DF | |
global HARD_ELO_TASK_DF | |
global HARD_ELO_BENCH_DF | |
global COMPLETE_SOLVE_DF | |
global INSTRUCT_SOLVE_DF | |
global HARD_COMPLETE_SOLVE_DF | |
global HARD_INSTRUCT_SOLVE_DF | |
if NEW_DATA_ON_LEADERBOARD: | |
print("Leaderboard updated at reload!") | |
leaderboard_dataset = datasets.load_dataset( | |
RESULT_REPO, | |
"default", | |
split="train", | |
cache_dir=HF_HOME, | |
download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS, # Uses the cached dataset | |
verification_mode="no_checks" | |
) | |
LEADERBOARD_DF = get_leaderboard_df( | |
leaderboard_dataset=leaderboard_dataset, | |
cols=COLS, | |
) | |
hard_leaderboard_dataset = datasets.load_dataset( | |
HARD_RESULT_REPO, | |
"default", | |
split="train", | |
cache_dir=HF_HOME, | |
download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS, # Uses the cached dataset | |
verification_mode="no_checks" | |
) | |
hard_leaderboard_df = get_leaderboard_df( | |
leaderboard_dataset=hard_leaderboard_dataset, | |
cols=COLS, | |
) | |
HARD_LEADERBOARD_DF = hard_leaderboard_df | |
elo_task_df = datasets.load_dataset( | |
ELO_REPO, | |
"default", | |
split="task_no_tie", | |
cache_dir=HF_HOME, | |
download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS, # Uses the cached dataset | |
verification_mode="no_checks" | |
).to_pandas() | |
elo_bench_df = datasets.load_dataset( | |
ELO_REPO, | |
"default", | |
split="benchmark_tie", | |
cache_dir=HF_HOME, | |
download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS, # Uses the cached dataset | |
verification_mode="no_checks" | |
).to_pandas() | |
ELO_TASK_DF = elo_task_df | |
ELO_BENCH_DF = elo_bench_df | |
hard_elo_task_df = datasets.load_dataset( | |
HARD_ELO_REPO, | |
"default", | |
split="task_no_tie", | |
cache_dir=HF_HOME, | |
download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS, # Uses the cached dataset | |
verification_mode="no_checks" | |
).to_pandas() | |
hard_elo_bench_df = datasets.load_dataset( | |
HARD_ELO_REPO, | |
"default", | |
split="benchmark_tie", | |
cache_dir=HF_HOME, | |
download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS, # Uses the cached dataset | |
verification_mode="no_checks" | |
).to_pandas() | |
HARD_ELO_TASK_DF = hard_elo_task_df | |
HARD_ELO_BENCH_DF = hard_elo_bench_df | |
complete_solve_df = datasets.load_dataset( | |
SOLVE_REPO, | |
"default", | |
split="complete", | |
cache_dir=HF_HOME, | |
download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS, # Uses the cached dataset | |
verification_mode="no_checks" | |
).to_pandas() | |
instruct_solve_df = datasets.load_dataset( | |
SOLVE_REPO, | |
"default", | |
split="instruct", | |
cache_dir=HF_HOME, | |
download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS, # Uses the cached dataset | |
verification_mode="no_checks" | |
).to_pandas() | |
COMPLETE_SOLVE_DF = complete_solve_df | |
INSTRUCT_SOLVE_DF = instruct_solve_df | |
hard_complete_solve_df = datasets.load_dataset( | |
HARD_SOLVE_REPO, | |
"default", | |
split="complete", | |
cache_dir=HF_HOME, | |
download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS, # Uses the cached dataset | |
verification_mode="no_checks" | |
).to_pandas() | |
hard_instruct_solve_df = datasets.load_dataset( | |
HARD_SOLVE_REPO, | |
"default", | |
split="instruct", | |
cache_dir=HF_HOME, | |
download_mode=datasets.DownloadMode.REUSE_DATASET_IF_EXISTS, # Uses the cached dataset | |
verification_mode="no_checks" | |
).to_pandas() | |
HARD_COMPLETE_SOLVE_DF = hard_complete_solve_df | |
HARD_INSTRUCT_SOLVE_DF = hard_instruct_solve_df | |
NEW_DATA_ON_LEADERBOARD = False | |
else: | |
LEADERBOARD_DF = leaderboard_initial_df | |
# HARD_LEADERBOARD_DF = hard_leaderboard_initial_df | |
ELO_TASK_DF = elo_task_df | |
# ELO_BENCH_DF = elo_bench_df | |
# HARD_ELO_TASK_DF = hard_elo_task_df | |
HARD_ELO_BENCH_DF = hard_elo_bench_df | |
COMPLETE_SOLVE_DF = complete_solve_df | |
# INSTRUCT_SOLVE_DF = instruct_solve_df | |
# HARD_COMPLETE_SOLVE_DF = hard_complete_solve_df | |
HARD_INSTRUCT_SOLVE_DF = hard_instruct_solve_df | |
return (LEADERBOARD_DF, HARD_LEADERBOARD_DF, ELO_TASK_DF, ELO_BENCH_DF, HARD_ELO_TASK_DF, HARD_ELO_BENCH_DF, COMPLETE_SOLVE_DF, INSTRUCT_SOLVE_DF, HARD_COMPLETE_SOLVE_DF, HARD_INSTRUCT_SOLVE_DF) | |
# return (HARD_LEADERBOARD_DF, HARD_ELO_TASK_DF, HARD_ELO_BENCH_DF, HARD_COMPLETE_SOLVE_DF, HARD_INSTRUCT_SOLVE_DF) | |
def init_space(): | |
"""Initializes the application space, loading only necessary data.""" | |
# Always redownload the leaderboard DataFrame | |
global LEADERBOARD_DF | |
global HARD_LEADERBOARD_DF | |
global ELO_TASK_DF | |
global ELO_BENCH_DF | |
global HARD_ELO_TASK_DF | |
global HARD_ELO_BENCH_DF | |
global COMPLETE_SOLVE_DF | |
global INSTRUCT_SOLVE_DF | |
global HARD_COMPLETE_SOLVE_DF | |
global HARD_INSTRUCT_SOLVE_DF | |
LEADERBOARD_DF, HARD_LEADERBOARD_DF, ELO_TASK_DF, ELO_BENCH_DF, HARD_ELO_TASK_DF, HARD_ELO_BENCH_DF, COMPLETE_SOLVE_DF, INSTRUCT_SOLVE_DF, HARD_COMPLETE_SOLVE_DF, HARD_INSTRUCT_SOLVE_DF = get_latest_data_leaderboard() | |
# HARD_LEADERBOARD_DF, HARD_ELO_TASK_DF, HARD_ELO_BENCH_DF, HARD_COMPLETE_SOLVE_DF, HARD_INSTRUCT_SOLVE_DF = get_latest_data_leaderboard() | |
return (LEADERBOARD_DF, HARD_LEADERBOARD_DF, ELO_TASK_DF, ELO_BENCH_DF, HARD_ELO_TASK_DF, HARD_ELO_BENCH_DF, COMPLETE_SOLVE_DF, INSTRUCT_SOLVE_DF, HARD_COMPLETE_SOLVE_DF, HARD_INSTRUCT_SOLVE_DF) | |
# return (HARD_LEADERBOARD_DF, HARD_ELO_TASK_DF, HARD_ELO_BENCH_DF, HARD_COMPLETE_SOLVE_DF, HARD_INSTRUCT_SOLVE_DF) | |
# Initialize VoteManager | |
# vote_manager = VoteManager(VOTES_PATH, EVAL_REQUESTS_PATH, VOTES_REPO) | |
# Schedule the upload_votes method to run every 15 minutes | |
# schedule.every(15).minutes.do(vote_manager.upload_votes) | |
# Start the scheduler in a separate thread | |
# scheduler_thread = Thread(target=run_scheduler, args=(vote_manager,), daemon=True) | |
# scheduler_thread.start() | |
# Calls the init_space function with the `full_init` parameter determined by the `do_full_init` variable. | |
# This initializes various DataFrames used throughout the application, with the level of initialization detail controlled by the `do_full_init` flag. | |
LEADERBOARD_DF, HARD_LEADERBOARD_DF, ELO_TASK_DF, \ | |
ELO_BENCH_DF, HARD_ELO_TASK_DF, HARD_ELO_BENCH_DF, \ | |
COMPLETE_SOLVE_DF, INSTRUCT_SOLVE_DF, HARD_COMPLETE_SOLVE_DF, \ | |
HARD_INSTRUCT_SOLVE_DF = init_space() | |
# HARD_LEADERBOARD_DF, HARD_ELO_TASK_DF, HARD_ELO_BENCH_DF, HARD_COMPLETE_SOLVE_DF, HARD_INSTRUCT_SOLVE_DF = init_space() | |
# Data processing for plots now only on demand in the respective Gradio tab | |
# def load_and_create_plots(): | |
# plot_df = create_plot_df(create_scores_df(LEADERBOARD_DF)) | |
# return plot_df | |
# Function to check if a user is logged in | |
def check_login(profile: gr.OAuthProfile | None) -> bool: | |
if profile is None: | |
return False | |
return True | |
def init_leaderboard(dataframe): | |
if dataframe is None or dataframe.empty: | |
raise ValueError("Leaderboard DataFrame is empty or None.") | |
return Leaderboard( | |
value=dataframe, | |
datatype=[c.type for c in fields(AutoEvalColumn)], | |
select_columns=SelectColumns( | |
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default], | |
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden or c.dummy], | |
label="Select Columns to Display:", | |
), | |
search_columns=[AutoEvalColumn.model.name], | |
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden], | |
filter_columns=[ | |
ColumnFilter(AutoEvalColumn.type.name, type="checkboxgroup", label="Model Types"), | |
ColumnFilter(AutoEvalColumn.openness.name, type="checkboxgroup", label="Openness"), | |
ColumnFilter(AutoEvalColumn.size_range.name, type="dropdown", label="Model Size"), | |
ColumnFilter(AutoEvalColumn.moe.name, type="checkboxgroup", label="Model Architecture"), | |
], | |
bool_checkboxgroup_label="Hide models", | |
interactive=False, | |
) | |
def init_others(dataframe): | |
if dataframe is None or dataframe.empty: | |
raise ValueError("Gradio DataFrame is empty or None.") | |
return gr.Dataframe(dataframe, visible=False) | |
main_block = gr.Blocks(css=custom_css) | |
with main_block as demo: | |
with gr.Row(elem_id="header-row"): | |
gr.HTML(TITLE + "<p>Total models: " + str(len(HARD_LEADERBOARD_DF))+ "</p>") | |
# gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
with gr.Tab("π Hard Set") as hard_tabs: | |
with gr.TabItem("π Benchmark", elem_id="llm-benchmark-tab-table", id="hard_bench"): | |
hard_leaderboard = init_leaderboard(HARD_LEADERBOARD_DF) | |
gr.Markdown( | |
""" | |
**Notes:** | |
- For the efficiency reasons, we only display the Hard Set leaderboard. | |
- _Hard Set_ vs _Full Set_: | |
- <u>Hard Set</u>: A subset of ~150 BigCodeBench tasks which is more user-facing and challenging. | |
- <u>Full Set</u>: The full set of 1140 BigCodeBench tasks. | |
- _Complete_ vs _Instruct_: | |
- <u>Complete</u>: Code Completion based on the (verbose) structured docstring. This split tests if the models are good at coding. | |
- <u>Instruct</u> (π₯Vibe Checkπ₯): Code Generation based on the (less verbose) NL-oriented instructions. This split tests if the models are really capable enough to understand human intents to code. | |
- `Complete` and `Instruct` represent the calibrated Pass@1 score on the BigCodeBench benchmark splits. | |
- `Average` is the average of `Complete` and `Instruct` when both are available. | |
- `Elo Rating` represents the task-level Bootstrap of Maximum Likelihood Elo rating on the Complete + Instruct splits. The rating starts from 1000 and is bootstrapped 500 times. We only consider the models having both `Complete` and `Instruct` scores. | |
- `#Act Params (B)` is the number of activated model parameters during inference. | |
- Model providers have the responsibility to avoid data contamination. Models trained on close data can be affected by contamination. | |
- For more details check the π About section. | |
""", | |
elem_classes="markdown-text", | |
) | |
with gr.TabItem("π Elo Rating", id="hard_elo"): | |
with gr.Column(): | |
with gr.Group(): | |
gr.Markdown("## (Task-level, No Tie, BigCodeBench-Complete) -- _Recommended_") | |
hard_task_elo_map = gr.Plot() | |
hard_elo_task_gr = init_others(HARD_ELO_TASK_DF) | |
demo.load(plot_elo_mle, [hard_elo_task_gr], | |
hard_task_elo_map) | |
with gr.Group(): | |
gr.Markdown("## (Benchmark-level, BigCodeBench-Complete)") | |
hard_bench_elo_map = gr.Plot() | |
hard_elo_bench_gr = init_others(HARD_ELO_BENCH_DF) | |
demo.load(plot_elo_mle, [hard_elo_bench_gr], | |
hard_bench_elo_map) | |
with gr.TabItem("𧩠Solve Rate", id="hard_solve"): | |
with gr.Column(): | |
hard_complete_map = gr.Plot() | |
hard_complete_solve_gr = init_others(HARD_COMPLETE_SOLVE_DF) | |
demo.load(plot_solve_rate, [hard_complete_solve_gr, | |
gr.Textbox("Complete", visible=False), | |
gr.Number(10, visible=False), | |
gr.Number(16, visible=False), | |
], hard_complete_map) | |
hard_instruct_map = gr.Plot() | |
hard_instruct_solve_gr = init_others(HARD_INSTRUCT_SOLVE_DF) | |
demo.load(plot_solve_rate, [hard_instruct_solve_gr, | |
gr.Textbox("Instruct", visible=False), | |
gr.Number(10, visible=False), | |
gr.Number(16, visible=False), | |
], hard_instruct_map) | |
with gr.Tab("π― Full Set") as full_tabs: | |
with gr.TabItem("π Benchmark", elem_id="llm-benchmark-tab-table", id="full_bench"): | |
leaderboard = init_leaderboard(LEADERBOARD_DF) | |
gr.Markdown( | |
""" | |
**Notes:** | |
- _Complete_ vs _Instruct_: | |
- <u>Complete</u>: Code Completion based on the (verbose) structured docstring. This variant tests if the models are good at coding. | |
- <u>Instruct</u> (π₯Vibe Checkπ₯): Code Generation based on the (less verbose) NL-oriented instructions. This variant tests if the models are really capable enough to understand human intents to code. | |
- `complete` and `instruct` represent the calibrated Pass@1 score on the BigCodeBench benchmark variants. | |
- `elo_mle` represents the task-level Bootstrap of Maximum Likelihood Elo rating on the BigCodeBench-Complete split. The rating starts from 1000 and is bootstrapped 500 times. | |
- `size` is the amount of activated model weight during inference. | |
- Model providers have the responsibility to avoid data contamination. Models trained on close data can be affected by contamination. | |
- For more details check the π About section. | |
""", | |
elem_classes="markdown-text", | |
) | |
with gr.TabItem("π Elo Rating", id="full_elo"): | |
with gr.Column(): | |
with gr.Group(): | |
gr.Markdown("## (Task-level, No Tie, BigCodeBench-Complete) -- _Recommended_") | |
task_elo_map = gr.Plot() | |
elo_task_gr = init_others(ELO_TASK_DF) | |
demo.load(plot_elo_mle, [elo_task_gr], task_elo_map) | |
with gr.Group(): | |
gr.Markdown("## (Benchmark-level, BigCodeBench-Complete)") | |
bench_elo_map = gr.Plot() | |
elo_bench_gr = init_others(ELO_BENCH_DF) | |
demo.load(plot_elo_mle, [elo_bench_gr], bench_elo_map) | |
with gr.TabItem("𧩠Solve Rate", id="full_solve"): | |
with gr.Column(): | |
complete_map = gr.Plot() | |
complete_solve_gr = init_others(COMPLETE_SOLVE_DF) | |
demo.load(plot_solve_rate, [complete_solve_gr, | |
gr.Textbox("Complete", visible=False), | |
], complete_map) | |
instruct_map = gr.Plot() | |
instruct_solve_gr = init_others(INSTRUCT_SOLVE_DF) | |
demo.load(plot_solve_rate, [instruct_solve_gr, | |
gr.Textbox("Instruct", visible=False), | |
], instruct_map) | |
with gr.TabItem("π About", id=3): | |
gr.Markdown(ABOUT_TEXT, elem_classes="markdown-text") | |
with gr.TabItem("π Data Viewer", id="viewer"): | |
search_input = gr.Textbox(label="Search by keyword") | |
count_output = gr.Number(label="Number of filtered items") | |
index_slider = gr.Slider(minimum=0, maximum=len(DATA)-1, step=1, label="Select Index") | |
# show_solution = gr.Checkbox(label="Show Solution") | |
show_test = gr.Checkbox(label="Show Test Cases") | |
update_button = gr.Button("Update") | |
task_id_output = gr.Textbox(label="Task ID") | |
code_completion = gr.Code(language="python", label="Code Completion") | |
nl_instruction = gr.Code(language="markdown", label="Natural Language Instruction") | |
# solution = gr.Code(language="python", label="Solution") | |
test_cases = gr.Code(language="python", label="Test Cases") | |
update_button.click( | |
update_display, | |
inputs=[search_input, index_slider, show_test], | |
outputs=[task_id_output, code_completion, nl_instruction, test_cases, count_output, index_slider] | |
) | |
# Initial load | |
demo.load( | |
update_display, | |
inputs=[search_input, index_slider, show_test], | |
outputs=[task_id_output, code_completion, nl_instruction, test_cases, count_output, index_slider] | |
) | |
with gr.TabItem("π Request", id=4): | |
gr.Markdown(SUBMISSION_TEXT_3) | |
# with gr.TabItem("π οΈ Execute", id=5): | |
# gr.Markdown("# BigCodeBench Evaluator") | |
# with gr.Row(): | |
# jsonl_file = gr.File(label="Upload JSONL file", file_types=[".jsonl"]) | |
# split = gr.Dropdown(choices=["complete", "instruct"], label="Split", value="complete") | |
# subset = gr.Dropdown(choices=["hard"], label="Subset", value="hard") | |
# with gr.Row(): | |
# parallel = gr.Number(label="Parallel (optional)", precision=0) | |
# min_time_limit = gr.Number(label="Min Time Limit", value=1, precision=1) | |
# max_as_limit = gr.Number(label="Max AS Limit", value=25*1024, precision=0) | |
# with gr.Row(): | |
# max_data_limit = gr.Number(label="Max Data Limit", value=25*1024, precision=0) | |
# max_stack_limit = gr.Number(label="Max Stack Limit", value=10, precision=0) | |
# check_gt_only = gr.Checkbox(label="Check GT Only") | |
# no_gt = gr.Checkbox(label="No GT") | |
# command_output = gr.Textbox(label="Command", value=default_command, interactive=False) | |
# with gr.Row(): | |
# submit_btn = gr.Button("Run Evaluation") | |
# download_btn = gr.DownloadButton(label="Download Result") | |
# log_output = gr.Textbox(label="Execution Logs", lines=20) | |
# input_components = [ | |
# jsonl_file, split, subset, parallel, | |
# min_time_limit, max_as_limit, max_data_limit, max_stack_limit, | |
# check_gt_only, no_gt | |
# ] | |
# for component in input_components: | |
# component.change(generate_command, inputs=input_components, outputs=command_output) | |
# def start_evaluation(command, jsonl_file, subset, split): | |
# extra = subset + "_" if subset != "full" else "" | |
# if jsonl_file is not None: | |
# result_path = os.path.basename(jsonl_file.name).replace(".jsonl", f"_{extra}eval_results.json") | |
# else: | |
# result_path = None | |
# for log in stream_logs(command, jsonl_file): | |
# if jsonl_file is not None: | |
# yield log, gr.update(value=result_path, label=result_path), gr.update() | |
# else: | |
# yield log, gr.update(), gr.update() | |
# is_running = False | |
# result_file = find_result_file() | |
# if result_file: | |
# return gr.update(label="Evaluation completed. Result file found."), gr.update(value=result_file) | |
# # gr.Button(visible=False)#, | |
# # gr.DownloadButton(label="Download Result", value=result_file, visible=True)) | |
# else: | |
# return gr.update(label="Evaluation completed. No result file found."), gr.update(value=result_path) | |
# # gr.Button("Run Evaluation", visible=True), | |
# # gr.DownloadButton(visible=False)) | |
# submit_btn.click(start_evaluation, | |
# inputs=[command_output, jsonl_file, subset, split], | |
# outputs=[log_output, download_btn]) | |
with gr.Row(): | |
with gr.Accordion("π Citation", open=False): | |
citation_button = gr.Textbox( | |
value=CITATION_BUTTON_TEXT, | |
label=CITATION_BUTTON_LABEL, | |
lines=20, | |
elem_id="citation-button", | |
show_copy_button=True, | |
) | |
main_block.load(fn=get_latest_data_leaderboard, inputs=[leaderboard, hard_leaderboard, elo_task_gr, elo_bench_gr, hard_elo_task_gr, hard_elo_bench_gr, complete_solve_gr, instruct_solve_gr, hard_complete_solve_gr, hard_instruct_solve_gr], outputs=[leaderboard, hard_leaderboard, elo_task_gr, elo_bench_gr, hard_elo_task_gr, hard_elo_bench_gr, complete_solve_gr, instruct_solve_gr, hard_complete_solve_gr, hard_instruct_solve_gr]) | |
# main_block.load(fn=get_latest_data_leaderboard, inputs=[hard_leaderboard, hard_elo_task_gr, hard_elo_bench_gr, hard_complete_solve_gr, hard_instruct_solve_gr], outputs=[hard_leaderboard, hard_elo_task_gr, hard_elo_bench_gr, hard_complete_solve_gr, hard_instruct_solve_gr]) | |
# leaderboard.change(fn=get_latest_data_queue, inputs=None, outputs=[finished_eval_table, running_eval_table, pending_eval_table]) | |
# pending_eval_table.change(fn=vote_manager.create_request_vote_df, inputs=[pending_eval_table], outputs=[pending_eval_table_votes]) | |
main_block.queue(default_concurrency_limit=100) | |
def enable_space_ci_and_return_server(ui: gr.Blocks) -> WebhooksServer: | |
# Taken from https://huggingface.co/spaces/Wauplin/gradio-space-ci/blob/075119aee75ab5e7150bf0814eec91c83482e790/src/gradio_space_ci/webhook.py#L61 | |
# Compared to original, this one do not monkeypatch Gradio which allows us to define more webhooks. | |
# ht to Lucain! | |
if SPACE_ID is None: | |
print("Not in a Space: Space CI disabled.") | |
return WebhooksServer(ui=main_block) | |
if IS_EPHEMERAL_SPACE: | |
print("In an ephemeral Space: Space CI disabled.") | |
return WebhooksServer(ui=main_block) | |
card = RepoCard.load(repo_id_or_path=SPACE_ID, repo_type="space") | |
config = card.data.get("space_ci", {}) | |
print(f"Enabling Space CI with config from README: {config}") | |
return configure_space_ci( | |
blocks=ui, | |
trusted_authors=config.get("trusted_authors"), | |
private=config.get("private", "auto"), | |
variables=config.get("variables", "auto"), | |
secrets=config.get("secrets"), | |
hardware=config.get("hardware"), | |
storage=config.get("storage"), | |
) | |
# Create webhooks server (with CI url if in Space and not ephemeral) | |
webhooks_server = enable_space_ci_and_return_server(ui=main_block) | |
# Add webhooks | |
def update_leaderboard(payload: WebhookPayload) -> None: | |
"""Redownloads the leaderboard dataset each time it updates""" | |
if payload.repo.type == "dataset" and payload.event.action == "update": | |
global NEW_DATA_ON_LEADERBOARD | |
if NEW_DATA_ON_LEADERBOARD: | |
return | |
NEW_DATA_ON_LEADERBOARD = True | |
for repo in [RESULT_REPO, HARD_RESULT_REPO, ELO_REPO, HARD_ELO_REPO, SOLVE_REPO, HARD_SOLVE_REPO]: | |
datasets.load_dataset( | |
repo, | |
"default", | |
cache_dir=HF_HOME, | |
download_mode=datasets.DownloadMode.FORCE_REDOWNLOAD, | |
verification_mode="no_checks" | |
) | |
webhooks_server.launch() | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(restart_space, "interval", hours=3) # restarted every 3h as backup in case automatic updates are not working | |
scheduler.start() |