# source: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard/blob/main/src/utils_display.py
from dataclasses import dataclass
import plotly.graph_objects as go
from transformers import AutoConfig
import plotly.express as px
import numpy as np
# These classes are for user facing column names, to avoid having to change them
# all around the code when a modif is needed
@dataclass
class ColumnContent:
name: str
type: str
displayed_by_default: bool
hidden: bool = False
def fields(raw_class):
return [
v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"
]
@dataclass(frozen=True)
class AutoEvalColumn: # Auto evals column
model_type_symbol = ColumnContent("type", "str", True)
model = ColumnContent("model", "markdown", True)
complete_score = ColumnContent("complete", "number", True)
instruct_score = ColumnContent("instruct", "number", True)
elo_mle = ColumnContent("elo_mle", "number", True)
dummy = ColumnContent("model", "str", True)
size = ColumnContent("size", "number", True)
def model_hyperlink(link, model_name):
return f'{model_name}'
def make_clickable_names(df):
df["model"] = df.apply(
lambda row: model_hyperlink(row["link"], row["model"]), axis=1
)
return df
def plot_elo_mle(df):
fig = px.scatter(df, x="model", y="rating", error_y="error_y",
error_y_minus="error_y_minus",
# title="Bootstrap of Elo MLE Estimates (BigCodeBench-Complete)"
)
fig.update_layout(xaxis_title="Model",
yaxis_title="Rating",
autosize=True,
# width=1300,
# height=900,
)
return fig
def plot_solve_rate(df, task, rows=30, cols=38):
keys = df["task_id"]
values = df["solve_rate"]
values = np.array(values)
n = len(values)
if rows is None or cols is None:
cols = int(math.sqrt(n))
rows = cols if cols * cols >= n else cols + 1
while rows * cols < n:
cols += 1
values = np.pad(values, (0, rows * cols - n), 'constant', constant_values=np.nan).reshape((rows, cols))
keys = np.pad(keys, (0, rows * cols - n), 'constant', constant_values='').reshape((rows, cols))
hover_text = np.empty_like(values, dtype=object)
for i in range(rows):
for j in range(cols):
if not np.isnan(values[i, j]):
hover_text[i, j] = f"{keys[i, j]}
Solve Rate: {values[i, j]:.2f}"
else:
hover_text[i, j] = "NaN"
upper_solve_rate = round(np.count_nonzero(values)/n*100, 2)
fig = go.Figure(data=go.Heatmap(
z=values,
text=hover_text,
hoverinfo='text',
colorscale='teal',
zmin=0,
zmax=100
))
fig.update_layout(
title=f'BigCodeBench-{task} (Lowest Upper Limit: {upper_solve_rate}%)',
xaxis_nticks=cols,
yaxis_nticks=rows,
xaxis=dict(showticklabels=False),
yaxis=dict(showticklabels=False),
autosize=True,
# width=760,
# height=600,
)
return fig
def styled_error(error):
return f"
{error}
" def styled_warning(warn): return f"{warn}
" def styled_message(message): return f"{message}
" def has_no_nan_values(df, columns): return df[columns].notna().all(axis=1) def has_nan_values(df, columns): return df[columns].isna().any(axis=1) def is_model_on_hub(model_name: str, revision: str) -> bool: try: AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=False) return True, None except ValueError: return ( False, "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.", ) except Exception as e: print(f"Could not get the model config from the hub.: {e}") return False, "was not found on hub!"