Spaces:
Runtime error
Runtime error
File size: 10,641 Bytes
a06494a 2e8bd01 a06494a b7eb9ad 2e8bd01 a06494a 2e8bd01 a06494a b7eb9ad e3a2bdc a06494a b7eb9ad a06494a b7eb9ad a06494a b7eb9ad a06494a 2e8bd01 79508cf 2e8bd01 a06494a 2e8bd01 b7eb9ad a06494a b7eb9ad a06494a b7eb9ad a06494a b7eb9ad 4810cf9 b7eb9ad a06494a b7eb9ad a06494a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
import os
import pprint as pp
from collections import OrderedDict, defaultdict
import json
import diff_viewer
import pandas as pd
import streamlit as st
from datasets import load_dataset, get_dataset_config_names
CHECK_DATASET_DIR_PATH_BEFORE_CLEAN_SELECT = st.secrets["CHECK_DATASET_DIR_PATH_BEFORE_CLEAN_SELECT"]
LOGS_DATASET_DIR_PATH_BEFORE_CLEAN_SELECT = st.secrets["LOGS_DATASET_DIR_PATH_BEFORE_CLEAN_SELECT"]
HF_API_TOKEN = st.secrets["HF_API_TOKEN"]
OPERATION_TYPES = [
"Applied filter",
"Applied deduplication function",
"Applied map function",
]
MAX_LEN_DS_CHECKS = st.secrets["MAX_LEN_DS_CHECKS"]
def get_ds(config):
ds = load_dataset(CHECK_DATASET_DIR_PATH_BEFORE_CLEAN_SELECT, config, use_auth_token=HF_API_TOKEN)
return ds
def next_idx(idx: int):
idx += 1
return idx % len(st.session_state["ds"])
def previous_idx(idx: int):
idx -= 1
return idx % len(st.session_state["ds"])
def on_click_next():
st.session_state["idx_1"] = next_idx(st.session_state["idx_1"])
st.session_state["idx_2"] = next_idx(st.session_state["idx_2"])
def on_click_previous():
st.session_state["idx_1"] = previous_idx(st.session_state["idx_1"])
st.session_state["idx_2"] = previous_idx(st.session_state["idx_2"])
def on_ds_change(config):
st.session_state["ds"] = get_ds(config)
st.session_state["idx_1"] = 0
st.session_state["idx_2"] = 1 if len(st.session_state["ds"]) > 1 else 0
st.session_state["ds_check_config"] = config
st.session_state["ds_max_docs"] = len(st.session_state["ds"])
def get_log_stats_df(raw_log):
data = OrderedDict(
{
"Order": [],
"Name": [],
"Initial number of samples": [],
"Final number of samples": [],
"Initial size in bytes": [],
"Final size in bytes": [],
}
)
metric_dict = defaultdict(lambda: {})
order = 0
for line in raw_log.split("\n"):
for metric_name in list(data.keys()) + OPERATION_TYPES:
if metric_name == "Name" or metric_name == "Order":
continue
if metric_name not in line:
continue
if (
metric_name == "Removed percentage"
and "Removed percentage in bytes" in line
):
continue
if (
metric_name == "Deduplicated percentage"
and "Deduplicated percentage in bytes" in line
):
continue
value = line.split(metric_name)[1].split(" ")[1]
if metric_name in OPERATION_TYPES:
operation_name = value
metric_dict[operation_name]["Order"] = order
order += 1
continue
assert (
metric_name not in metric_dict[operation_name]
), f"operation_name: {operation_name}\n\nvalue: {value}\n\nmetric_dict: {pp.pformat(metric_dict)} \n\nmetric_name: {metric_name} \n\nline: {line}"
metric_dict[operation_name][metric_name] = value
for name, data_dict in metric_dict.items():
for metric_name in data.keys():
if metric_name == "Name":
data[metric_name].append(name)
continue
data[metric_name].append(data_dict[metric_name])
df = pd.DataFrame(data)
df.rename(
{
"Initial size in bytes": "Initial size (GB)",
"Final size in bytes": "Final size (GB)",
},
axis=1,
inplace=True,
)
df["% samples removed"] = (
(
df["Initial number of samples"].astype(float)
- df["Final number of samples"].astype(float)
)
/ df["Initial number of samples"].astype(float)
* 100
)
df["Size (GB) % removed"] = (
(df["Initial size (GB)"].astype(float) - df["Final size (GB)"].astype(float))
/ df["Initial size (GB)"].astype(float)
* 100
)
return df
def get_logs_stats(raw_log):
try:
df = get_log_stats_df(raw_log)
st.dataframe(df)
except Exception as e:
st.write(e)
st.write("Subset of the logs:")
subcontent = [
line
for line in raw_log.split("\n")
if "INFO - __main__" in line
and "Examples of" not in line
and "Examples n°" not in line
]
st.write(subcontent)
def meta_component(idx_key: str = "idx_1"):
if "meta" not in st.session_state["ds"][st.session_state[idx_key]]:
return
with st.expander("See meta field of the example"):
meta = st.session_state["ds"][st.session_state["idx_1"]]["meta"]
st.write(meta)
def filter_page():
index_example = st.number_input("Index of the chosen example", min_value=0, max_value=st.session_state["ds_max_docs"] -1, value=0, step=1)
st.session_state["idx_1"] = index_example
st.session_state["idx_2"] = next_idx(index_example)
idx_1 = st.session_state["idx_1"]
idx_2 = st.session_state["idx_2"]
text_1 = st.session_state["ds"][idx_1]["text"]
text_2 = st.session_state["ds"][idx_2]["text"]
st.markdown(
f"<h1 style='text-align: center'>Some examples of filtered out texts</h1>",
unsafe_allow_html=True,
)
# col_button_previous, _, col_button_next = st.columns(3)
# col_button_next.button(
# "Go to next example",
# key=None,
# help=None,
# on_click=on_click_next,
# args=None,
# kwargs=None,
# )
# col_button_previous.button(
# "Go to previous example",
# key=None,
# help=None,
# on_click=on_click_previous,
# args=None,
# kwargs=None,
# )
col_1, col_2 = st.columns(2)
with col_1:
st.subheader(f"Example n°{idx_1}")
meta_component(idx_key="idx_1")
text_1_show = text_1.replace("\n", "<br>")
st.markdown(f"<div>{text_1_show}</div>", unsafe_allow_html=True)
with col_2:
st.subheader(f"Example n°{idx_2}")
meta_component(idx_key="idx_2")
text_2_show = text_2.replace("\n", "<br>")
st.markdown(f"<div>{text_2_show}</div>", unsafe_allow_html=True)
def dedup_or_cleaning_page():
index_example = st.number_input("Index of the chosen example", min_value=0, max_value=st.session_state["ds_max_docs"] -1, value=0, step=1)
st.session_state["idx_1"] = index_example
st.session_state["idx_2"] = next_idx(index_example)
# col_button_previous, col_title, col_button_next = st.columns(3)
# col_title.markdown(
# f"<h1 style='text-align: center'>Example n°{st.session_state['idx_1']}</h1>",
# unsafe_allow_html=True,
# )
# col_button_next.button(
# "Go to next example",
# key=None,
# help=None,
# on_click=on_click_next,
# args=None,
# kwargs=None,
# )
# col_button_previous.button(
# "Go to previous example",
# key=None,
# help=None,
# on_click=on_click_previous,
# args=None,
# kwargs=None,
# )
text = st.session_state["ds"][st.session_state["idx_1"]]["text"]
old_text = st.session_state["ds"][st.session_state["idx_1"]]["old_text"]
st.markdown(
f"<h2 style='text-align: center'>Changes applied</h1>", unsafe_allow_html=True
)
col_text_1, col_text_2 = st.columns(2)
with col_text_1:
st.subheader("Old text")
with col_text_2:
st.subheader("New text")
diff_viewer.diff_viewer(old_text=old_text, new_text=text, lang="none")
meta_component(idx_key="idx_1")
with st.expander("See full old and new texts of the example"):
text_show = text.replace("\n", "<br>")
old_text_show = old_text.replace("\n", "<br>")
col_1, col_2 = st.columns(2)
with col_1:
st.subheader("Old text")
st.markdown(f"<div>{old_text_show}</div>", unsafe_allow_html=True)
with col_2:
st.subheader("New text")
st.markdown(f"<div>{text_show}</div>", unsafe_allow_html=True)
# Streamlit page
st.set_page_config(page_title="Dataset explorer", page_icon=":hugging_face:", layout="wide")
st.write(
"The purpose of this application is to sequentially view the changes made to a dataset."
)
# st.write(CHECK_DATASET_DIR_PATH_BEFORE_CLEAN_SELECT)
# ds_log = load_dataset(CHECK_DATASET_DIR_PATH_BEFORE_CLEAN_SELECT, 'clean_v1_dsname_lm_en_multi_un_2', use_auth_token=HF_API_TOKEN)
# st.write(ds_log)
col_option_clean, col_option_ds = st.columns(2)
with open("dataset_configs.json", "r") as f:
CHECK_CONFIGS = json.load(f)
# CHECK_CONFIGS = get_dataset_config_names(CHECK_DATASET_DIR_PATH_BEFORE_CLEAN_SELECT, use_auth_token=HF_API_TOKEN)
CLEANING_VERSIONS = set()
dataset_names = set()
checks_names = set()
for check_config in CHECK_CONFIGS:
cleaning_version, check_config = check_config.split("_dsname_")
dataset_name, checks_name = check_config.split("_operation_")
CLEANING_VERSIONS.add(cleaning_version)
dataset_names.add(dataset_name)
checks_names.add(checks_names)
# CLEANING_VERSIONS = sorted(list(os.listdir(DATASET_DIR_PATH_BEFORE_CLEAN_SELECT)), reverse=True)
option_clean = col_option_clean.selectbox(
"Select the cleaning version", CLEANING_VERSIONS
)
# DATASET_DIR_PATH = os.path.join(DATASET_DIR_PATH_BEFORE_CLEAN_SELECT, option_clean)
# dataset_names = sorted(list(os.listdir(DATASET_DIR_PATH)))
option_ds = col_option_ds.selectbox("Select the dataset", dataset_names)
# checks_path = os.path.join(DATASET_DIR_PATH, option_ds, "checks")
# checks_names = sorted(list(os.listdir(checks_path)))
# log_path = os.path.join(DATASET_DIR_PATH, option_ds, "logs.txt")
ds_log = load_dataset(LOGS_DATASET_DIR_PATH_BEFORE_CLEAN_SELECT, f"{option_clean}_dsname_{option_ds}", use_auth_token=HF_API_TOKEN)
log = ds_log["train"][0]
get_logs_stats(log=log)
option_check = st.selectbox("Select the operation applied to inspect", checks_names)
ds_check_config = f"{option_clean}_dsname_{option_ds}_operation_{option_check}"
if "ds" not in st.session_state or ds_check_config != st.session_state["ds_check_config"]:
on_ds_change(ds_check_config)
if len(st.session_state["ds"]) == MAX_LEN_DS_CHECKS:
st.warning(
f"Note: only a subset of size {MAX_LEN_DS_CHECKS} of the modified / filtered examples can be shown in this application"
)
with st.expander("See details of the available checks"):
st.write(st.session_state["ds"])
_ = filter_page() if "_filter_" in option_check else dedup_or_cleaning_page()
|