Spaces:
Paused
Paused
File size: 9,947 Bytes
8221951 7209bc9 d4e69ae 8221951 7209bc9 8221951 7209bc9 17fa222 7209bc9 8221951 2eb2fa2 7b606e4 8c631ff 7b606e4 8221951 2eb2fa2 8221951 7b606e4 8221951 d6e116f 2eb2fa2 1133507 8221951 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
import json
import os
import gradio as gr
import requests
from huggingface_hub import HfApi
hf_api = HfApi()
roots_datasets = {dset.id.split("/")[-1]:dset for dset in hf_api.list_datasets(author="bigscience-data", use_auth_token=os.environ.get("bigscience_data_token"))}
# def get_dataset_metadata():
def get_docid_html(docid):
data_org, dataset, docid = docid.split("/")
target = data_org + "/" + dataset
metadata = roots_datasets[dataset]
if metadata.private:
docid_html = (
f"<a"
f'class="underline-on-hover"'
f'title="PRIVATE DATASET"'
f'style="color:#AA4A44;"'
f'href="https://huggingface.co/datasets/bigscience-data/{dataset}"'
f'target="_blank">{target}</a><span style="color: #7978FF;">/{docid}</span>"'
)
else:
docid_html = (
f"<a"
f'class="underline-on-hover"'
f'title="License: {metadata.tags[0].split(":")[-1]}"'
f'style="color:#2D31FA;"'
f'href="https://huggingface.co/datasets/bigscience-data/{dataset}"'
f'target="_blank">{target}</a><span style="color: #7978FF;">/{docid}</span>"'
)
return docid_html
PII_TAGS = {"KEY", "EMAIL", "USER", "IP_ADDRESS", "ID", "IPv4", "IPv6"}
PII_PREFIX = "PI:"
def process_pii(text):
for tag in PII_TAGS:
text = text.replace(
PII_PREFIX + tag,
"""<b><mark style="background: Fuchsia; color: Lime;">REDACTED {}</mark></b>""".format(tag),
)
return text
def process_results(results, highlight_terms):
if len(results) == 0:
return """<br><p style='font-family: Arial; color:Silver; text-align: center;'>
No results retrieved.</p><br><hr>"""
results_html = ""
for result in results:
tokens = result["text"].split()
tokens_html = []
for token in tokens:
if token in highlight_terms:
tokens_html.append("<b>{}</b>".format(token))
else:
tokens_html.append(token)
tokens_html = " ".join(tokens_html)
tokens_html = process_pii(tokens_html)
meta_html = (
"""
<p class='underline-on-hover' style='font-size:12px; font-family: Arial; color:#585858; text-align: left;'>
<a href='{}' target='_blank'>{}</a></p>""".format(
result["meta"]["url"], result["meta"]["url"]
)
if "meta" in result and result["meta"] is not None and "url" in result["meta"]
else ""
)
docid_html = get_docid_html(result["docid"])
results_html += """{}
<p style='font-size:14px; font-family: Arial; color:#7978FF; text-align: left;'>Document ID: {}</p>
<p style='font-size:12px; font-family: Arial; color:MediumAquaMarine'>Language: {}</p>
<p style='font-family: Arial;'>{}</p>
<br>
""".format(
meta_html, docid_html, result["lang"], tokens_html
)
return results_html + "<hr>"
def scisearch(query, language, num_results=10):
try:
query = " ".join(query.split())
if query == "" or query is None:
return ""
post_data = {"query": query, "k": num_results}
if language != "detect_language":
post_data["lang"] = language
output = requests.post(
os.environ.get("address"),
headers={"Content-type": "application/json"},
data=json.dumps(post_data),
timeout=60,
)
payload = json.loads(output.text)
if "err" in payload:
if payload["err"]["type"] == "unsupported_lang":
detected_lang = payload["err"]["meta"]["detected_lang"]
return f"""
<p style='font-size:18px; font-family: Arial; color:MediumVioletRed; text-align: center;'>
Detected language <b>{detected_lang}</b> is not supported.<br>
Please choose a language from the dropdown or type another query.
</p><br><hr><br>"""
results = payload["results"]
highlight_terms = payload["highlight_terms"]
if language == "detect_language":
return (
(
f"""<p style='font-family: Arial; color:MediumAquaMarine; text-align: center; line-height: 3em'>
Detected language: <b>{results[0]["lang"]}</b></p><br><hr><br>"""
if len(results) > 0 and language == "detect_language"
else ""
)
+ process_results(results, highlight_terms)
)
if language == "all":
results_html = ""
for lang, results_for_lang in results.items():
if len(results_for_lang) == 0:
results_html += f"""<p style='font-family: Arial; color:Silver; text-align: left; line-height: 3em'>
No results for language: <b>{lang}</b><hr></p>"""
continue
collapsible_results = f"""
<details>
<summary style='font-family: Arial; color:MediumAquaMarine; text-align: left; line-height: 3em'>
Results for language: <b>{lang}</b><hr>
</summary>
{process_results(results_for_lang, highlight_terms)}
</details>"""
results_html += collapsible_results
return results_html
return process_results(results, highlight_terms)
except Exception as e:
results_html = f"""
<p style='font-size:18px; font-family: Arial; color:MediumVioletRed; text-align: center;'>
Raised {type(e).__name__}</p>
<p style='font-size:14px; font-family: Arial; '>
Check if a relevant discussion already exists in the Community tab. If not, please open a discussion.
</p>
"""
return results_html
def flag(query, language, num_results, issue_description):
try:
post_data = {"query": query, "k": num_results, "flag": True, "description": issue_description}
if language != "detect_language":
post_data["lang"] = language
output = requests.post(
os.environ.get("address"),
headers={"Content-type": "application/json"},
data=json.dumps(post_data),
timeout=120,
)
results = json.loads(output.text)
except:
print("Error flagging")
return ""
description = """# <p style="text-align: center;"> πΈ π ROOTS search tool π πΈ </p>
The ROOTS corpus was developed during the [BigScience workshop](https://bigscience.huggingface.co/) for the purpose
of training the Multilingual Large Language Model [BLOOM](https://huggingface.co/bigscience/bloom). This tool allows
you to search through the ROOTS corpus. We serve a BM25 index for each language or group of languages included in
ROOTS. You can read more about the details of the tool design
[here](https://huggingface.co/spaces/bigscience-data/scisearch/blob/main/roots_search_tool_specs.pdf). For more
information and instructions on how to access the full corpus check [this form](https://forms.gle/qyYswbEL5kA23Wu99)."""
if __name__ == "__main__":
demo = gr.Blocks(
css=".underline-on-hover:hover { text-decoration: underline; } .flagging { font-size:12px; color:Silver; }"
)
with demo:
with gr.Row():
gr.Markdown(value=description)
with gr.Row():
query = gr.Textbox(lines=1, max_lines=1, placeholder="Type your query here...", label="Query")
with gr.Row():
lang = gr.Dropdown(
choices=[
"ar",
"ca",
"code",
"en",
"es",
"eu",
"fr",
"id",
"indic",
"nigercongo",
"pt",
"vi",
"zh",
"detect_language",
"all",
],
value="en",
label="Language",
)
with gr.Row():
k = gr.Slider(1, 100, value=10, step=1, label="Max Results")
with gr.Row():
submit_btn = gr.Button("Submit")
with gr.Row():
results = gr.HTML(label="Results")
flag_description = """
<p class='flagging'>
If you choose to flag your search, we will save the query, language and the number of results you requested.
Please consider adding any additional context in the box on the right.</p>"""
with gr.Column(visible=False) as flagging_form:
flag_txt = gr.Textbox(
lines=1,
placeholder="Type here...",
label="""If you choose to flag your search, we will save the query, language and the number of results
you requested. Please consider adding relevant additional context below:""",
)
flag_btn = gr.Button("Flag Results")
flag_btn.click(flag, inputs=[query, lang, k, flag_txt], outputs=[flag_txt])
def submit(query, lang, k):
query = query.strip()
if query is None or query == "":
return "", ""
return {
results: scisearch(query, lang, k),
flagging_form: gr.update(visible=True),
}
query.submit(fn=submit, inputs=[query, lang, k], outputs=[results, flagging_form])
submit_btn.click(submit, inputs=[query, lang, k], outputs=[results, flagging_form])
demo.launch(enable_queue=True, debug=True)
|