File size: 6,847 Bytes
c19ca42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
#!/usr/bin/env python
import os
import time
import functools
import argparse
import logging
import warnings
from dataclasses import dataclass

logging.getLogger("DeepSpeed").disabled = True
warnings.filterwarnings(action="ignore", category=FutureWarning)
warnings.filterwarnings(action="ignore", category=DeprecationWarning)

import torch
import diffusers

n_warmup = 5
n_traces = 10
n_runs = 100
args = {}
pipe = None
log = logging.getLogger("sd")


def setup_logging():
    from rich.theme import Theme
    from rich.logging import RichHandler
    from rich.console import Console
    from rich.traceback import install
    log.setLevel(logging.DEBUG)
    console = Console(log_time=True, log_time_format='%H:%M:%S-%f', theme=Theme({ "traceback.border": "black", "traceback.border.syntax_error": "black", "inspect.value.border": "black" }))
    logging.basicConfig(level=logging.ERROR, format='%(asctime)s | %(name)s | %(levelname)s | %(module)s | %(message)s', handlers=[logging.NullHandler()]) # redirect default logger to null
    rh = RichHandler(show_time=True, omit_repeated_times=False, show_level=True, show_path=False, markup=False, rich_tracebacks=True, log_time_format='%H:%M:%S-%f', level=logging.DEBUG, console=console)
    rh.setLevel(logging.DEBUG)
    log.addHandler(rh)
    logging.getLogger("diffusers").setLevel(logging.ERROR)
    logging.getLogger("torch").setLevel(logging.ERROR)
    warnings.filterwarnings(action="ignore", category=torch.jit.TracerWarning)
    install(console=console, extra_lines=1, max_frames=10, width=console.width, word_wrap=False, indent_guides=False, suppress=[])


def generate_inputs():
    if args.type == 'sd15':
        sample = torch.randn(2, 4, 64, 64).half().cuda()
        timestep = torch.rand(1).half().cuda() * 999
        encoder_hidden_states = torch.randn(2, 77, 768).half().cuda()
        return sample, timestep, encoder_hidden_states
    if args.type == 'sdxl':
        sample = torch.randn(2, 4, 64, 64).half().cuda()
        timestep = torch.rand(1).half().cuda() * 999
        encoder_hidden_states = torch.randn(2, 77, 768).half().cuda()
        text_embeds = torch.randn(1, 77, 2048).half().cuda()
        return sample, timestep, encoder_hidden_states, text_embeds


def load_model():
    log.info(f'versions: torch={torch.__version__} diffusers={diffusers.__version__}')
    diffusers_load_config = {
        "low_cpu_mem_usage": True,
        "torch_dtype": torch.float16,
        "safety_checker": None,
        "requires_safety_checker": False,
        "load_safety_checker": False,
        "load_connected_pipeline": True,
        "use_safetensors": True,
    }
    pipeline = diffusers.StableDiffusionPipeline if args.type == 'sd15' else diffusers.StableDiffusionXLPipeline
    global pipe # pylint: disable=global-statement
    t0 = time.time()
    pipe = pipeline.from_single_file(args.model, **diffusers_load_config).to('cuda')
    size = os.path.getsize(args.model)
    log.info(f'load: model={args.model} type={args.type} time={time.time() - t0:.3f}s size={size / 1024 / 1024:.3f}mb')


def load_trace(fn: str):

    @dataclass
    class UNet2DConditionOutput:
        sample: torch.FloatTensor

    class TracedUNet(torch.nn.Module):
        def __init__(self):
            super().__init__()
            self.in_channels = pipe.unet.in_channels
            self.device = pipe.unet.device

        def forward(self, latent_model_input, t, encoder_hidden_states):
            sample = unet_traced(latent_model_input, t, encoder_hidden_states)[0]
            return UNet2DConditionOutput(sample=sample)

    t0 = time.time()
    unet_traced = torch.jit.load(fn)
    pipe.unet = TracedUNet()
    size = os.path.getsize(fn)
    log.info(f'load: optimized={fn} time={time.time() - t0:.3f}s size={size / 1024 / 1024:.3f}mb')


def trace_model():
    log.info(f'tracing model: {args.model}')
    torch.set_grad_enabled(False)
    unet = pipe.unet
    unet.eval()
    # unet.to(memory_format=torch.channels_last)  # use channels_last memory format
    unet.forward = functools.partial(unet.forward, return_dict=False)  # set return_dict=False as default

    # warmup
    t0 = time.time()
    for _ in range(n_warmup):
        with torch.inference_mode():
            inputs = generate_inputs()
            _output = unet(*inputs)
    log.info(f'warmup: time={time.time() - t0:.3f}s passes={n_warmup}')

    # trace
    t0 = time.time()
    unet_traced = torch.jit.trace(unet, inputs, check_trace=True)
    unet_traced.eval()
    log.info(f'trace: time={time.time() - t0:.3f}s')

    # optimize graph
    t0 = time.time()
    for _ in range(n_traces):
        with torch.inference_mode():
            inputs = generate_inputs()
            _output = unet_traced(*inputs)
    log.info(f'optimize: time={time.time() - t0:.3f}s passes={n_traces}')

    # save the model
    if args.save:
        t0 = time.time()
        basename, _ext = os.path.splitext(args.model)
        fn = f"{basename}.pt"
        unet_traced.save(fn)
        size = os.path.getsize(fn)
        log.info(f'save: optimized={fn} time={time.time() - t0:.3f}s size={size / 1024 / 1024:.3f}mb')
        return fn

    pipe.unet = unet_traced
    return None


def benchmark_model(msg: str):
    with torch.inference_mode():
        inputs = generate_inputs()
        torch.cuda.synchronize()
        for n in range(n_runs):
            if n > n_runs / 10:
                t0 = time.time()
            _output = pipe.unet(*inputs)
        torch.cuda.synchronize()
        t1 = time.time()
        log.info(f"benchmark unet: {t1 - t0:.3f}s passes={n_runs} type={msg}")
        return t1 - t0


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description = 'SD.Next')
    parser.add_argument('--model', type=str, default='', required=True, help='model path')
    parser.add_argument('--type', type=str, default='sd15', choices=['sd15', 'sdxl'], required=False, help='model type, default: %(default)s')
    parser.add_argument('--benchmark', default = False, action='store_true', help = "run benchmarks, default: %(default)s")
    parser.add_argument('--trace', default = True, action='store_true', help = "run jit tracing, default: %(default)s")
    parser.add_argument('--save', default = False, action='store_true', help = "save optimized unet, default: %(default)s")
    args = parser.parse_args()
    setup_logging()
    log.info('sdnext model jit tracing')
    if not os.path.isfile(args.model):
        log.error(f"invalid model path: {args.model}")
        exit(1)
    load_model()
    if args.benchmark:
        time0 = benchmark_model('original')
    unet_saved = trace_model()
    if unet_saved is not None:
        load_trace(unet_saved)
    if args.benchmark:
        time1 = benchmark_model('traced')
        log.info(f'benchmark speedup: {100 * (time0 - time1) / time0:.3f}%')