File size: 4,643 Bytes
c19ca42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
from util import Map

embedding = Map({
    "id_task": 0,
    "embedding_name": "",
    "learn_rate": -1,
    "batch_size": 1,
    "steps": 500,
    "data_root": "",
    "log_directory": "train/log",
    "template_filename": "subject_filewords.txt",
    "gradient_step": 20,
    "training_width": 512,
    "training_height": 512,
    "shuffle_tags": False,
    "tag_drop_out": 0,
    "clip_grad_mode": "disabled",
    "clip_grad_value": "0.1",
    "latent_sampling_method": "deterministic",
    "create_image_every": 0,
    "save_embedding_every": 0,
    "save_image_with_stored_embedding": False,
    "preview_from_txt2img": False,
    "preview_prompt": "",
    "preview_negative_prompt": "blurry, duplicate, ugly, deformed, low res, watermark, text",
    "preview_steps": 20,
    "preview_sampler_index": 0,
    "preview_cfg_scale": 6,
    "preview_seed": -1,
    "preview_width": 512,
    "preview_height": 512,
    "varsize": False,
    "use_weight": False,
})

lora = Map({
    "bucket_no_upscale": False,
    "bucket_reso_steps": 64,
    "cache_latents": True,
    "caption_dropout_every_n_epochs": None,
    "caption_dropout_rate": 0.0,
    "caption_extension": ".txt",
    "caption_extention": ".txt",
    "caption_tag_dropout_rate": 0.0,
    "clip_skip": None,
    "color_aug": False,
    "dataset_repeats": 1,
    "debug_dataset": False,
    "enable_bucket": False,
    "face_crop_aug_range": None,
    "flip_aug": False,
    "full_fp16": False,
    "gradient_accumulation_steps": 1,
    "gradient_checkpointing": False,
    "in_json": "",
    "keep_tokens": None,
    "learning_rate": 5e-05,
    "log_prefix": None,
    "logging_dir": None,
    "lr_scheduler_num_cycles": 1,
    "lr_scheduler_power": 1,
    "lr_scheduler": "cosine",
    "lr_warmup_steps": 0,
    "max_bucket_reso": 1024,
    "max_data_loader_n_workers": 8,
    "max_grad_norm": 0.0,
    "max_token_length": None,
    "max_train_epochs": None,
    "max_train_steps": 2500,
    "mem_eff_attn": False,
    "min_bucket_reso": 256,
    "mixed_precision": "fp16",
    "network_alpha": 1.0,
    "network_args": None,
    "network_dim": 16,
    "network_module": "networks.lora",
    "network_train_text_encoder_only": False,
    "network_train_unet_only": False,
    "network_weights": None,
    "no_metadata": False,
    "output_dir": "",
    "output_name": "",
    "persistent_data_loader_workers": False,
    "pretrained_model_name_or_path": "",
    "prior_loss_weight": 1.0,
    "random_crop": False,
    "reg_data_dir": None,
    "resolution": "512,512",
    "resume": None,
    "save_every_n_epochs": None,
    "save_last_n_epochs_state": None,
    "save_last_n_epochs": None,
    "save_model_as": "ckpt",
    "save_n_epoch_ratio": None,
    "save_precision": "fp16",
    "save_state": False,
    "seed": 42,
    "shuffle_caption": False,
    "text_encoder_lr": 5e-05,
    "train_batch_size": 1,
    "train_data_dir": "",
    "training_comment": "",
    "unet_lr": 1e-04,
    "use_8bit_adam": False,
    "v_parameterization": False,
    "v2": False,
    "vae": None,
    "xformers": False,
})

process = Map({
    # general settings, do not modify
    'format': '.jpg', # image format
    'target_size': 512, # target resolution
    'segmentation_model': 0, # segmentation model 0/general 1/landscape
    'segmentation_background': (192, 192, 192), # segmentation background color
    'blur_score': 1.8, # max score for face blur detection
    'blur_samplesize': 60, # sample size to use for blur detection
    'similarity_score': 0.8, # maximum similarity score before image is discarded
    'similarity_size': 64, # base similarity detection on reduced images
    'range_score': 0.15, # min score for face color dynamicrange detection
    # face processing settings
    'face_score': 0.7, # min face detection score
    'face_pad': 0.1, # pad face image percentage
    'face_model': 1, # which face model to use 0/close-up 1/standard
    # body processing settings
    'body_score': 0.9, # min body detection score
    'body_visibility': 0.5, # min visibility score for each detected body part
    'body_parts': 15, # min number of detected body parts with sufficient visibility
    'body_pad': 0.2,  # pad body image percentage
    'body_model': 2, # body model to use 0/low 1/medium 2/high
    # similarity detection settings
    # interrogate settings
    'interrogate': False, # interrogate images
    'interrogate_model': ['clip', 'deepdanbooru'], # interrogate models
    'tag_limit': 5, # number of tags to extract
    # validations
    # tbd
    'face_segmentation': False, # segmentation enabled
    'body_segmentation': False, # segmentation enabled
})