Spaces:
Runtime error
Runtime error
File size: 12,222 Bytes
c19ca42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
# pylint: disable=global-statement
import os
import io
import math
import base64
import numpy as np
import mediapipe as mp
from PIL import Image, ImageOps
from pi_heif import register_heif_opener
from skimage.metrics import structural_similarity as ssim
from scipy.stats import beta
import util
import sdapi
import options
face_model = None
body_model = None
segmentation_model = None
all_images = []
all_images_by_type = {}
class Result():
def __init__(self, typ: str, fn: str, tag: str = None, requested: list = []):
self.type = typ
self.input = fn
self.output = ''
self.basename = ''
self.message = ''
self.image = None
self.caption = ''
self.tag = tag
self.tags = []
self.ops = []
self.steps = requested
def detect_blur(image: Image):
# based on <https://github.com/karthik9319/Blur-Detection/>
bw = ImageOps.grayscale(image)
cx, cy = image.size[0] // 2, image.size[1] // 2
fft = np.fft.fft2(bw)
fftShift = np.fft.fftshift(fft)
fftShift[cy - options.process.blur_samplesize: cy + options.process.blur_samplesize, cx - options.process.blur_samplesize: cx + options.process.blur_samplesize] = 0
fftShift = np.fft.ifftshift(fftShift)
recon = np.fft.ifft2(fftShift)
magnitude = np.log(np.abs(recon))
mean = round(np.mean(magnitude), 2)
return mean
def detect_dynamicrange(image: Image):
# based on <https://towardsdatascience.com/measuring-enhancing-image-quality-attributes-234b0f250e10>
data = np.asarray(image)
image = np.float32(data)
RGB = [0.299, 0.587, 0.114]
height, width = image.shape[:2] # pylint: disable=unsubscriptable-object
brightness_image = np.sqrt(image[..., 0] ** 2 * RGB[0] + image[..., 1] ** 2 * RGB[1] + image[..., 2] ** 2 * RGB[2]) # pylint: disable=unsubscriptable-object
hist, _ = np.histogram(brightness_image, bins=256, range=(0, 255))
img_brightness_pmf = hist / (height * width)
dist = beta(2, 2)
ys = dist.pdf(np.linspace(0, 1, 256))
ref_pmf = ys / np.sum(ys)
dot_product = np.dot(ref_pmf, img_brightness_pmf)
squared_dist_a = np.sum(ref_pmf ** 2)
squared_dist_b = np.sum(img_brightness_pmf ** 2)
res = dot_product / math.sqrt(squared_dist_a * squared_dist_b)
return round(res, 2)
def detect_simmilar(image: Image):
img = image.resize((options.process.similarity_size, options.process.similarity_size))
img = ImageOps.grayscale(img)
data = np.array(img)
similarity = 0
for i in all_images:
val = ssim(data, i, data_range=255, channel_axis=None, gradient=False, full=False)
if val > similarity:
similarity = val
all_images.append(data)
return similarity
def segmentation(res: Result):
global segmentation_model
if segmentation_model is None:
segmentation_model = mp.solutions.selfie_segmentation.SelfieSegmentation(model_selection=options.process.segmentation_model)
data = np.array(res.image)
results = segmentation_model.process(data)
condition = np.stack((results.segmentation_mask,) * 3, axis=-1) > 0.1
background = np.zeros(data.shape, dtype=np.uint8)
background[:] = options.process.segmentation_background
data = np.where(condition, data, background) # consider using a joint bilateral filter instead of pure combine
segmented = Image.fromarray(data)
res.image = segmented
res.ops.append('segmentation')
return res
def unload():
global face_model
if face_model is not None:
face_model = None
global body_model
if body_model is not None:
body_model = None
global segmentation_model
if segmentation_model is not None:
segmentation_model = None
def encode(img):
with io.BytesIO() as stream:
img.save(stream, 'JPEG')
values = stream.getvalue()
encoded = base64.b64encode(values).decode()
return encoded
def reset():
unload()
global all_images_by_type
all_images_by_type = {}
global all_images
all_images = []
def upscale_restore_image(res: Result, upscale: bool = False, restore: bool = False):
kwargs = util.Map({
'image': encode(res.image),
'codeformer_visibility': 0.0,
'codeformer_weight': 0.0,
})
if res.image.width >= options.process.target_size and res.image.height >= options.process.target_size:
upscale = False
if upscale:
kwargs.upscaler_1 = 'SwinIR_4x'
kwargs.upscaling_resize = 2
res.ops.append('upscale')
if restore:
kwargs.codeformer_visibility = 1.0
kwargs.codeformer_weight = 0.2
res.ops.append('restore')
if upscale or restore:
result = sdapi.postsync('/sdapi/v1/extra-single-image', kwargs)
if 'image' not in result:
res.message = 'failed to upscale/restore image'
else:
res.image = Image.open(io.BytesIO(base64.b64decode(result['image'])))
return res
def interrogate_image(res: Result, tag: str = None):
caption = ''
tags = []
for model in options.process.interrogate_model:
json = util.Map({ 'image': encode(res.image), 'model': model })
result = sdapi.postsync('/sdapi/v1/interrogate', json)
if model == 'clip':
caption = result.caption if 'caption' in result else ''
caption = caption.split(',')[0].replace(' a ', ' ').strip()
if tag is not None:
caption = res.tag + ', ' + caption
if model == 'deepdanbooru':
tag = result.caption if 'caption' in result else ''
tags = tag.split(',')
tags = [t.replace('(', '').replace(')', '').replace('\\', '').split(':')[0].strip() for t in tags]
if tag is not None:
for t in res.tag.split(',')[::-1]:
tags.insert(0, t.strip())
pos = 0 if len(tags) == 0 else 1
tags.insert(pos, caption.split(' ')[1])
tags = [t for t in tags if len(t) > 2]
if len(tags) > options.process.tag_limit:
tags = tags[:options.process.tag_limit]
res.caption = caption
res.tags = tags
res.ops.append('interrogate')
return res
def resize_image(res: Result):
resized = res.image
resized.thumbnail((options.process.target_size, options.process.target_size), Image.Resampling.HAMMING)
res.image = resized
res.ops.append('resize')
return res
def square_image(res: Result):
size = max(res.image.width, res.image.height)
squared = Image.new('RGB', (size, size))
squared.paste(res.image, ((size - res.image.width) // 2, (size - res.image.height) // 2))
res.image = squared
res.ops.append('square')
return res
def process_face(res: Result):
res.ops.append('face')
global face_model
if face_model is None:
face_model = mp.solutions.face_detection.FaceDetection(min_detection_confidence=options.process.face_score, model_selection=options.process.face_model)
results = face_model.process(np.array(res.image))
if results.detections is None:
res.message = 'no face detected'
res.image = None
return res
box = results.detections[0].location_data.relative_bounding_box
if box.xmin < 0 or box.ymin < 0 or (box.width - box.xmin) > 1 or (box.height - box.ymin) > 1:
res.message = 'face out of frame'
res.image = None
return res
x = max(0, (box.xmin - options.process.face_pad / 2) * res.image.width)
y = max(0, (box.ymin - options.process.face_pad / 2)* res.image.height)
w = min(res.image.width, (box.width + options.process.face_pad) * res.image.width)
h = min(res.image.height, (box.height + options.process.face_pad) * res.image.height)
x = max(0, x)
res.image = res.image.crop((x, y, x + w, y + h))
return res
def process_body(res: Result):
res.ops.append('body')
global body_model
if body_model is None:
body_model = mp.solutions.pose.Pose(static_image_mode=True, min_detection_confidence=options.process.body_score, model_complexity=options.process.body_model)
results = body_model.process(np.array(res.image))
if results.pose_landmarks is None:
res.message = 'no body detected'
res.image = None
return res
x0 = [res.image.width * (i.x - options.process.body_pad / 2) for i in results.pose_landmarks.landmark if i.visibility > options.process.body_visibility]
y0 = [res.image.height * (i.y - options.process.body_pad / 2) for i in results.pose_landmarks.landmark if i.visibility > options.process.body_visibility]
x1 = [res.image.width * (i.x + options.process.body_pad / 2) for i in results.pose_landmarks.landmark if i.visibility > options.process.body_visibility]
y1 = [res.image.height * (i.y + options.process.body_pad / 2) for i in results.pose_landmarks.landmark if i.visibility > options.process.body_visibility]
if len(x0) < options.process.body_parts:
res.message = f'insufficient body parts detected: {len(x0)}'
res.image = None
return res
res.image = res.image.crop((max(0, min(x0)), max(0, min(y0)), min(res.image.width, max(x1)), min(res.image.height, max(y1))))
return res
def process_original(res: Result):
res.ops.append('original')
return res
def save_image(res: Result, folder: str):
if res.image is None or folder is None:
return res
all_images_by_type[res.type] = all_images_by_type.get(res.type, 0) + 1
res.basename = os.path.basename(res.input).split('.')[0]
res.basename = str(all_images_by_type[res.type]).rjust(3, '0') + '-' + res.type + '-' + res.basename
res.basename = os.path.join(folder, res.basename)
res.output = res.basename + options.process.format
res.image.save(res.output)
res.image.close()
res.ops.append('save')
return res
def file(filename: str, folder: str, tag = None, requested = []):
# initialize result dict
res = Result(fn = filename, typ='unknown', tag=tag, requested = requested)
# open image
try:
register_heif_opener()
res.image = Image.open(filename)
if res.image.mode == 'RGBA':
res.image = res.image.convert('RGB')
res.image = ImageOps.exif_transpose(res.image) # rotate image according to EXIF orientation
except Exception as e:
res.message = f'error opening: {e}'
return res
# primary steps
if 'face' in requested:
res.type = 'face'
res = process_face(res)
elif 'body' in requested:
res.type = 'body'
res = process_body(res)
elif 'original' in requested:
res.type = 'original'
res = process_original(res)
# validation steps
if res.image is None:
return res
if 'blur' in requested:
res.ops.append('blur')
val = detect_blur(res.image)
if val > options.process.blur_score:
res.message = f'blur check failed: {val}'
res.image = None
if 'range' in requested:
res.ops.append('range')
val = detect_dynamicrange(res.image)
if val < options.process.range_score:
res.message = f'dynamic range check failed: {val}'
res.image = None
if 'similarity' in requested:
res.ops.append('similarity')
val = detect_simmilar(res.image)
if val > options.process.similarity_score:
res.message = f'dynamic range check failed: {val}'
res.image = None
if res.image is None:
return res
# post processing steps
res = upscale_restore_image(res, 'upscale' in requested, 'restore' in requested)
if res.image.width < options.process.target_size or res.image.height < options.process.target_size:
res.message = f'low resolution: [{res.image.width}, {res.image.height}]'
res.image = None
return res
if 'interrogate' in requested:
res = interrogate_image(res, tag)
if 'resize' in requested:
res = resize_image(res)
if 'square' in requested:
res = square_image(res)
if 'segment' in requested:
res = segmentation(res)
# finally save image
res = save_image(res, folder)
return res
|