Spaces:
Runtime error
Runtime error
File size: 22,298 Bytes
c19ca42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
#!/usr/bin/env python
"""
Examples:
- sd15: train.py --type lora --tag girl --comments sdnext --input ~/generative/Input/mia --process original,interrogate,resize --name mia
- sdxl: train.py --type lora --tag girl --comments sdnext --input ~/generative/Input/mia --process original,interrogate,resize --precision fp32 --optimizer Adafactor --sdxl --name miaxl
- offline: train.py --type lora --tag girl --comments sdnext --input ~/generative/Input/mia --model /home/vlado/dev/sdnext/models/Stable-diffusion/sdxl/miaanimeSFWNSFWSDXL_v40.safetensors --dir /home/vlado/dev/sdnext/models/Lora/ --precision fp32 --optimizer Adafactor --sdxl --name miaxl
"""
# system imports
import os
import re
import gc
import sys
import json
import shutil
import pathlib
import asyncio
import logging
import tempfile
import argparse
# local imports
import util
import sdapi
import options
# globals
args = None
log = logging.getLogger('train')
valid_steps = ['original', 'face', 'body', 'blur', 'range', 'upscale', 'restore', 'interrogate', 'resize', 'square', 'segment']
log_file = os.path.join(os.path.dirname(__file__), 'train.log')
server_ok = False
# methods
def setup_logging():
from rich.theme import Theme
from rich.logging import RichHandler
from rich.console import Console
from rich.pretty import install as pretty_install
from rich.traceback import install as traceback_install
console = Console(log_time=True, log_time_format='%H:%M:%S-%f', theme=Theme({
"traceback.border": "black",
"traceback.border.syntax_error": "black",
"inspect.value.border": "black",
}))
# logging.getLogger("urllib3").setLevel(logging.ERROR)
# logging.getLogger("httpx").setLevel(logging.ERROR)
level = logging.DEBUG if args.debug else logging.INFO
logging.basicConfig(level=logging.ERROR, format='%(asctime)s | %(name)s | %(levelname)s | %(module)s | %(message)s', filename=log_file, filemode='a', encoding='utf-8', force=True)
log.setLevel(logging.DEBUG) # log to file is always at level debug for facility `sd`
pretty_install(console=console)
traceback_install(console=console, extra_lines=1, width=console.width, word_wrap=False, indent_guides=False, suppress=[])
rh = RichHandler(show_time=True, omit_repeated_times=False, show_level=True, show_path=False, markup=False, rich_tracebacks=True, log_time_format='%H:%M:%S-%f', level=level, console=console)
rh.set_name(level)
while log.hasHandlers() and len(log.handlers) > 0:
log.removeHandler(log.handlers[0])
log.addHandler(rh)
def mem_stats():
gc.collect()
import torch
if torch.cuda.is_available():
with torch.no_grad():
torch.cuda.empty_cache()
with torch.cuda.device('cuda'):
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
mem = util.get_memory()
peak = { 'active': mem['gpu-active']['peak'], 'allocated': mem['gpu-allocated']['peak'], 'reserved': mem['gpu-reserved']['peak'] }
log.debug(f"memory cpu: {mem.ram} gpu current: {mem.gpu} gpu peak: {peak}")
def parse_args():
global args # pylint: disable=global-statement
parser = argparse.ArgumentParser(description = 'SD.Next Train')
group_server = parser.add_argument_group('Server')
group_server.add_argument('--server', type=str, default='http://127.0.0.1:7860', required=False, help='server url, default: %(default)s')
group_server.add_argument('--user', type=str, default=None, required=False, help='server url, default: %(default)s')
group_server.add_argument('--password', type=str, default=None, required=False, help='server url, default: %(default)s')
group_server.add_argument('--dir', type=str, default=None, required=False, help='folder with trained networks, default: use server setting')
group_main = parser.add_argument_group('Main')
group_main.add_argument('--type', type=str, choices=['embedding', 'ti', 'lora', 'lyco', 'dreambooth', 'hypernetwork'], default=None, required=True, help='training type')
group_main.add_argument('--model', type=str, default='', required=False, help='base model to use for training, default: current loaded model')
group_main.add_argument('--name', type=str, default=None, required=True, help='output filename')
group_main.add_argument('--tag', type=str, default='person', required=False, help='primary tags, default: %(default)s')
group_main.add_argument('--comments', type=str, default='', required=False, help='comments to be added to trained model metadata, default: %(default)s')
group_data = parser.add_argument_group('Dataset')
group_data.add_argument('--input', type=str, default=None, required=True, help='input folder with training images')
group_data.add_argument('--interim', type=str, default='', required=False, help='where to store processed images, default is system temp/train')
group_data.add_argument('--process', type=str, default='original,interrogate,resize,square', required=False, help=f'list of possible processing steps: {valid_steps}, default: %(default)s')
group_train = parser.add_argument_group('Train')
group_train.add_argument('--gradient', type=int, default=1, required=False, help='gradient accumulation steps, default: %(default)s')
group_train.add_argument('--steps', type=int, default=2500, required=False, help='training steps, default: %(default)s')
group_train.add_argument('--batch', type=int, default=1, required=False, help='batch size, default: %(default)s')
group_train.add_argument('--lr', type=float, default=1e-04, required=False, help='model learning rate, default: %(default)s')
group_train.add_argument('--dim', type=int, default=32, required=False, help='network dimension or number of vectors, default: %(default)s')
# lora params
group_train.add_argument('--repeats', type=int, default=1, required=False, help='number of repeats per image, default: %(default)s')
group_train.add_argument('--alpha', type=float, default=0, required=False, help='lora/lyco alpha for weights scaling, default: dim/2')
group_train.add_argument('--algo', type=str, default=None, choices=['locon', 'loha', 'lokr', 'ia3'], required=False, help='alternative lyco algoritm, default: %(default)s')
group_train.add_argument('--args', type=str, default=None, required=False, help='lora/lyco additional network arguments, default: %(default)s')
group_train.add_argument('--optimizer', type=str, default='AdamW', required=False, help='optimizer type, default: %(default)s')
group_train.add_argument('--precision', type=str, choices=['fp16', 'fp32'], default='fp16', required=False, help='training precision, default: %(default)s')
group_train.add_argument('--sdxl', default = False, action='store_true', help = "run sdxl training, default: %(default)s")
# AdamW (default), AdamW8bit, PagedAdamW8bit, Lion8bit, PagedLion8bit, Lion, SGDNesterov, SGDNesterov8bit, DAdaptation(DAdaptAdamPreprint), DAdaptAdaGrad, DAdaptAdam, DAdaptAdan, DAdaptAdanIP, DAdaptLion, DAdaptSGD, AdaFactor
group_other = parser.add_argument_group('Other')
group_other.add_argument('--overwrite', default = False, action='store_true', help = "overwrite existing training, default: %(default)s")
group_other.add_argument('--experimental', default = False, action='store_true', help = "enable experimental options, default: %(default)s")
group_other.add_argument('--debug', default = False, action='store_true', help = "enable debug level logging, default: %(default)s")
args = parser.parse_args()
def prepare_server():
global server_ok # pylint: disable=global-statement
try:
server_status = util.Map(sdapi.progresssync())
server_state = server_status['state']
server_ok = True
except Exception:
log.warning(f'sdnext server error: {server_status}')
server_ok = False
if server_ok and server_state['job_count'] > 0:
log.error(f'sdnext server not idle: {server_state}')
exit(1)
if server_ok:
server_options = util.Map(sdapi.options())
server_options.options.save_training_settings_to_txt = False
server_options.options.training_enable_tensorboard = False
server_options.options.training_tensorboard_save_images = False
server_options.options.pin_memory = True
server_options.options.save_optimizer_state = False
server_options.options.training_image_repeats_per_epoch = args.repeats
server_options.options.training_write_csv_every = 0
sdapi.postsync('/sdapi/v1/options', server_options.options)
log.info('updated server options')
def verify_args():
server_options = util.Map(sdapi.options())
if args.model != '':
if not os.path.isfile(args.model):
log.error(f'cannot find loaded model: {args.model}')
exit(1)
if server_ok:
server_options.options.sd_model_checkpoint = args.model
sdapi.postsync('/sdapi/v1/options', server_options.options)
elif server_ok:
args.model = server_options.options.sd_model_checkpoint.split(' [')[0]
if args.sdxl and (server_options.sd_backend != 'diffusers' or server_options.diffusers_pipeline != 'Stable Diffusion XL'):
log.warning('server checkpoint is not sdxl')
else:
log.error('no model specified')
exit(1)
base_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
if args.type == 'lora' and not server_ok and not args.dir:
log.error('offline lora training requires --dir <lora folder>')
exit(1)
if args.type == 'lora':
import transformers
if transformers.__version__ != '4.30.2':
log.error(f'lora training requires specific transformers version: current {transformers.__version__} required transformers==4.30.2')
exit(1)
args.lora_dir = server_options.options.lora_dir or args.dir
if not os.path.isabs(args.lora_dir):
args.lora_dir = os.path.join(base_dir, args.lora_dir)
args.lyco_dir = server_options.options.lyco_dir or args.dir
if not os.path.isabs(args.lyco_dir):
args.lyco_dir = os.path.join(base_dir, args.lyco_dir)
args.embeddings_dir = server_options.options.embeddings_dir or args.dir
if not os.path.isfile(args.model):
args.ckpt_dir = server_options.options.ckpt_dir
if not os.path.isabs(args.ckpt_dir):
args.ckpt_dir = os.path.join(base_dir, args.ckpt_dir)
attempt = os.path.abspath(os.path.join(args.ckpt_dir, args.model))
args.model = attempt if os.path.isfile(attempt) else args.model
if not os.path.isfile(args.model):
attempt = os.path.abspath(os.path.join(args.ckpt_dir, args.model + '.safetensors'))
args.model = attempt if os.path.isfile(attempt) else args.model
if not os.path.isfile(args.model):
log.error(f'cannot find loaded model: {args.model}')
exit(1)
if not os.path.exists(args.input) or not os.path.isdir(args.input):
log.error(f'cannot find training folder: {args.input}')
exit(1)
if not os.path.exists(args.lora_dir) or not os.path.isdir(args.lora_dir):
log.error(f'cannot find lora folder: {args.lora_dir}')
exit(1)
if not os.path.exists(args.lyco_dir) or not os.path.isdir(args.lyco_dir):
log.error(f'cannot find lyco folder: {args.lyco_dir}')
exit(1)
if args.interim != '':
args.process_dir = args.interim
else:
args.process_dir = os.path.join(tempfile.gettempdir(), 'train', args.name)
log.debug(f'args: {vars(args)}')
log.debug(f'server flags: {server_options.flags}')
log.debug(f'server options: {server_options.options}')
async def training_loop():
async def async_train():
res = await sdapi.post('/sdapi/v1/train/embedding', options.embedding)
log.info(f'train embedding result: {res}')
async def async_monitor():
from tqdm.rich import tqdm
await asyncio.sleep(3)
res = util.Map(sdapi.progress())
with tqdm(desc='train embedding', total=res.state.job_count) as pbar:
while res.state.job_no < res.state.job_count and not res.state.interrupted and not res.state.skipped:
await asyncio.sleep(2)
prev_job = res.state.job_no
res = util.Map(sdapi.progress())
loss = re.search(r"Loss: (.*?)(?=\<)", res.textinfo)
if loss:
pbar.set_postfix({ 'loss': loss.group(0) })
pbar.update(res.state.job_no - prev_job)
a = asyncio.create_task(async_train())
b = asyncio.create_task(async_monitor())
await asyncio.gather(a, b) # wait for both pipeline and monitor to finish
def train_embedding():
log.info(f'{args.type} options: {options.embedding}')
create_options = util.Map({
"name": args.name,
"num_vectors_per_token": args.dim,
"overwrite_old": False,
"init_text": args.tag,
})
fn = os.path.join(args.embeddings_dir, args.name) + '.pt'
if os.path.exists(fn) and args.overwrite:
log.warning(f'delete existing embedding {fn}')
os.remove(fn)
else:
log.error(f'embedding exists {fn}')
return
log.info(f'create embedding {create_options}')
res = sdapi.postsync('/sdapi/v1/create/embedding', create_options)
if 'info' in res and 'error' in res['info']: # formatted error
log.error(res.info)
elif 'info' in res: # no error
asyncio.run(training_loop())
else: # unknown error
log.error(f'create embedding error {res}')
def train_lora():
fn = os.path.join(options.lora.output_dir, args.name)
for ext in ['.ckpt', '.pt', '.safetensors']:
if os.path.exists(fn + ext):
if args.overwrite:
log.warning(f'delete existing lora: {fn + ext}')
os.remove(fn + ext)
else:
log.error(f'lora exists: {fn + ext}')
return
log.info(f'{args.type} options: {options.lora}')
# lora imports
lora_path = os.path.abspath(os.path.join(os.path.dirname(__file__), os.pardir, 'modules', 'lora'))
lycoris_path = os.path.abspath(os.path.join(os.path.dirname(__file__), os.pardir, 'modules', 'lycoris'))
sys.path.append(lora_path)
if args.type == 'lyco':
sys.path.append(lycoris_path)
log.debug('importing lora lib')
if not args.sdxl:
import train_network
trainer = train_network.NetworkTrainer()
trainer.train(options.lora)
else:
import sdxl_train_network
trainer = sdxl_train_network.SdxlNetworkTrainer()
trainer.train(options.lora)
if args.type == 'lyco':
log.debug('importing lycoris lib')
import importlib
_network_module = importlib.import_module(options.lora.network_module)
def prepare_options():
if args.type == 'embedding':
log.info('train embedding')
options.lora.in_json = None
if args.type == 'dreambooth':
log.info('train using dreambooth style training')
options.lora.vae_batch_size = args.batch
options.lora.in_json = None
if args.type == 'lora':
log.info('train using lora style training')
options.lora.output_dir = args.lora_dir
options.lora.in_json = os.path.join(args.process_dir, args.name + '.json')
if args.type == 'lyco':
log.info('train using lycoris network')
options.lora.output_dir = args.lora_dir
options.lora.network_module = 'lycoris.kohya'
options.lora.in_json = os.path.join(args.process_dir, args.name + '.json')
# lora specific
options.lora.save_model_as = 'safetensors'
options.lora.pretrained_model_name_or_path = args.model
options.lora.output_name = args.name
options.lora.max_train_steps = args.steps
options.lora.network_dim = args.dim
options.lora.network_alpha = args.dim // 2 if args.alpha == 0 else args.alpha
options.lora.network_args = []
options.lora.training_comment = args.comments
options.lora.sdpa = True
options.lora.optimizer_type = args.optimizer
if args.algo is not None:
options.lora.network_args.append(f'algo={args.algo}')
if args.args is not None:
for net_arg in args.args:
options.lora.network_args.append(net_arg)
options.lora.gradient_accumulation_steps = args.gradient
options.lora.learning_rate = args.lr
options.lora.train_batch_size = args.batch
options.lora.train_data_dir = args.process_dir
options.lora.no_half_vae = args.precision == 'fp16'
# embedding specific
options.embedding.embedding_name = args.name
options.embedding.learn_rate = str(args.lr)
options.embedding.batch_size = args.batch
options.embedding.steps = args.steps
options.embedding.data_root = args.process_dir
options.embedding.log_directory = os.path.join(args.process_dir, 'log')
options.embedding.gradient_step = args.gradient
def process_inputs():
import process
import filetype
pathlib.Path(args.process_dir).mkdir(parents=True, exist_ok=True)
processing_options = args.process.split(',') if isinstance(args.process, str) else args.process
processing_options = [opt.strip() for opt in re.split(',| ', args.process)]
log.info(f'processing steps: {processing_options}')
for step in processing_options:
if step not in valid_steps:
log.error(f'invalid processing step: {[step]}')
exit(1)
for root, _sub_dirs, folder in os.walk(args.input):
files = [os.path.join(root, f) for f in folder if filetype.is_image(os.path.join(root, f))]
log.info(f'processing input images: {len(files)}')
if os.path.exists(args.process_dir):
if args.overwrite:
log.warning(f'removing existing processed folder: {args.process_dir}')
shutil.rmtree(args.process_dir, ignore_errors=True)
else:
log.info(f'processed folder exists: {args.process_dir}')
steps = [step for step in processing_options if step in ['face', 'body', 'original']]
process.reset()
options.process.target_size = 1024 if args.sdxl else 512
metadata = {}
for step in steps:
if step == 'face':
opts = [step for step in processing_options if step not in ['body', 'original']]
if step == 'body':
opts = [step for step in processing_options if step not in ['face', 'original', 'upscale', 'restore']] # body does not perform upscale or restore
if step == 'original':
opts = [step for step in processing_options if step not in ['face', 'body', 'upscale', 'restore', 'blur', 'range', 'segment']] # original does not perform most steps
log.info(f'processing current step: {opts}')
tag = step
if tag == 'original' and args.tag is not None:
concept = args.tag.split(',')[0].strip()
else:
concept = step
if args.type in ['lora', 'lyco', 'dreambooth']:
folder = os.path.join(args.process_dir, str(args.repeats) + '_' + concept) # separate concepts per folder
if args.type in ['embedding']:
folder = os.path.join(args.process_dir) # everything into same folder
log.info(f'processing concept: {concept}')
log.info(f'processing output folder: {folder}')
pathlib.Path(folder).mkdir(parents=True, exist_ok=True)
results = {}
if server_ok:
for f in files:
res = process.file(filename = f, folder = folder, tag = args.tag, requested = opts)
if res.image: # valid result
results[res.type] = results.get(res.type, 0) + 1
results['total'] = results.get('total', 0) + 1
rel_path = res.basename.replace(os.path.commonpath([res.basename, args.process_dir]), '')
if rel_path.startswith(os.path.sep):
rel_path = rel_path[1:]
metadata[rel_path] = { 'caption': res.caption, 'tags': ','.join(res.tags) }
if options.lora.in_json is None:
with open(res.output.replace(options.process.format, '.txt'), "w", encoding='utf-8') as outfile:
outfile.write(res.caption)
log.info(f"processing {'saved' if res.image is not None else 'skipped'}: {f} => {res.output} {res.ops} {res.message}")
else:
log.info('processing skipped: offline')
folders = [os.path.join(args.process_dir, folder) for folder in os.listdir(args.process_dir) if os.path.isdir(os.path.join(args.process_dir, folder))]
log.info(f'input datasets {folders}')
if options.lora.in_json is not None:
with open(options.lora.in_json, "w", encoding='utf-8') as outfile: # write json at the end only
outfile.write(json.dumps(metadata, indent=2))
for folder in folders: # create latents
import latents
latents.create_vae_latents(util.Map({ 'input': folder, 'json': options.lora.in_json }))
latents.unload_vae()
r = { 'inputs': len(files), 'outputs': results, 'metadata': options.lora.in_json }
log.info(f'processing steps result: {r}')
if args.gradient < 0:
log.info(f"setting gradient accumulation to number of images: {results['total']}")
options.lora.gradient_accumulation_steps = results['total']
options.embedding.gradient_step = results['total']
process.unload()
if __name__ == '__main__':
parse_args()
setup_logging()
log.info('SD.Next Train')
sdapi.sd_url = args.server
if args.user is not None:
sdapi.sd_username = args.user
if args.password is not None:
sdapi.sd_password = args.password
prepare_server()
verify_args()
prepare_options()
mem_stats()
process_inputs()
mem_stats()
try:
if args.type == 'embedding':
train_embedding()
if args.type == 'lora' or args.type == 'lyco' or args.type == 'dreambooth':
train_lora()
except KeyboardInterrupt:
log.error('interrupt requested')
sdapi.interrupt()
mem_stats()
log.info('done')
|