Spaces:
Runtime error
Runtime error
File size: 24,053 Bytes
c19ca42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 |
from types import SimpleNamespace
from typing import List
import os
import sys
import time
import gradio as gr
import numpy as np
import cv2
from PIL import Image, ImageFilter, ImageOps
from transformers import SamModel, SamImageProcessor, MaskGenerationPipeline
from modules import shared, errors, devices, ui_components, ui_symbols, paths, sd_models
from modules.memstats import memory_stats
debug = shared.log.trace if os.environ.get('SD_MASK_DEBUG', None) is not None else lambda *args, **kwargs: None
debug('Trace: MASK')
def get_crop_region(mask, pad=0):
"""finds a rectangular region that contains all masked ares in an image. Returns (x1, y1, x2, y2) coordinates of the rectangle.
For example, if a user has painted the top-right part of a 512x512 image", the result may be (256, 0, 512, 256)"""
h, w = mask.shape
crop_left = 0
for i in range(w):
if not (mask[:, i] == 0).all():
break
crop_left += 1
crop_right = 0
for i in reversed(range(w)):
if not (mask[:, i] == 0).all():
break
crop_right += 1
crop_top = 0
for i in range(h):
if not (mask[i] == 0).all():
break
crop_top += 1
crop_bottom = 0
for i in reversed(range(h)):
if not (mask[i] == 0).all():
break
crop_bottom += 1
x1 = max(crop_left - pad, 0)
y1 = max(crop_top - pad, 0)
x2 = max(w - crop_right + pad, 0)
y2 = max(h - crop_bottom + pad, 0)
if x2 < x1:
x1, x2 = x2, x1
if y2 < y1:
y1, y2 = y2, y1
crop_region = (
int(min(x1, w)),
int(min(y1, h)),
int(min(x2, w)),
int(min(y2, h)),
)
debug(f'Mask crop: mask={w, h} region={crop_region} pad={pad}')
return crop_region
def expand_crop_region(crop_region, processing_width, processing_height, image_width, image_height):
"""expands crop region get_crop_region() to match the ratio of the image the region will processed in; returns expanded region
for example, if user drew mask in a 128x32 region, and the dimensions for processing are 512x512, the region will be expanded to 128x128."""
x1, y1, x2, y2 = crop_region
ratio_crop_region = (x2 - x1) / (y2 - y1)
ratio_processing = processing_width / processing_height
if ratio_crop_region > ratio_processing:
desired_height = (x2 - x1) / ratio_processing
desired_height_diff = int(desired_height - (y2-y1))
y1 -= desired_height_diff//2
y2 += desired_height_diff - desired_height_diff//2
if y2 >= image_height:
diff = y2 - image_height
y2 -= diff
y1 -= diff
if y1 < 0:
y2 -= y1
y1 -= y1
if y2 >= image_height:
y2 = image_height
else:
desired_width = (y2 - y1) * ratio_processing
desired_width_diff = int(desired_width - (x2-x1))
x1 -= desired_width_diff//2
x2 += desired_width_diff - desired_width_diff//2
if x2 >= image_width:
diff = x2 - image_width
x2 -= diff
x1 -= diff
if x1 < 0:
x2 -= x1
x1 -= x1
if x2 >= image_width:
x2 = image_width
crop_expand = (
int(x1),
int(y1),
int(x2),
int(y2),
)
debug(f'Mask expand: image={image_width, image_height} processing={processing_width, processing_height} region={crop_expand}')
return crop_expand
def fill(image, mask):
"""fills masked regions with colors from image using blur. Not extremely effective."""
image_mod = Image.new('RGBA', (image.width, image.height))
image_masked = Image.new('RGBa', (image.width, image.height))
image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(mask.convert('L')))
image_masked = image_masked.convert('RGBa')
for radius, repeats in [(256, 1), (64, 1), (16, 2), (4, 4), (2, 2), (0, 1)]:
blurred = image_masked.filter(ImageFilter.GaussianBlur(radius)).convert('RGBA')
for _ in range(repeats):
image_mod.alpha_composite(blurred)
return image_mod.convert("RGB")
"""
[docs](https://huggingface.co/docs/transformers/v4.36.1/en/model_doc/sam#overview)
TODO:
- PerSAM
- REMBG
- https://huggingface.co/docs/transformers/tasks/semantic_segmentation
- transformers.pipeline.MaskGenerationPipeline: https://huggingface.co/models?pipeline_tag=mask-generation
- transformers.pipeline.ImageSegmentationPipeline: https://huggingface.co/models?pipeline_tag=image-segmentation
"""
MODELS = {
'None': None,
'Facebook SAM ViT Base': 'facebook/sam-vit-base',
'Facebook SAM ViT Large': 'facebook/sam-vit-large',
'Facebook SAM ViT Huge': 'facebook/sam-vit-huge',
'SlimSAM Uniform': 'Zigeng/SlimSAM-uniform-50',
'SlimSAM Uniform Tiny': 'Zigeng/SlimSAM-uniform-77',
'Rembg Silueta': 'silueta',
'Rembg U2Net': 'u2net',
'Rembg ISNet': 'isnet',
# "u2net_human_seg",
# "isnet-general-use",
# "isnet-anime",
}
COLORMAP = ['autumn', 'bone', 'jet', 'winter', 'rainbow', 'ocean', 'summer', 'spring', 'cool', 'hsv', 'pink', 'hot', 'parula', 'magma', 'inferno', 'plasma', 'viridis', 'cividis', 'twilight', 'shifted', 'turbo', 'deepgreen']
TYPES = ['None', 'Opaque', 'Binary', 'Masked', 'Grayscale', 'Color', 'Composite']
cache_dir = 'models/control/segment'
generator: MaskGenerationPipeline = None
busy = False
btn_mask = None
btn_lama = None
lama_model = None
controls = []
opts = SimpleNamespace(**{
'model': None,
'auto_mask': 'None',
'mask_only': False,
'mask_blur': 0.01,
'mask_erode': 0.01,
'mask_dilate': 0.01,
'seg_iou_thresh': 0.5,
'seg_score_thresh': 0.5,
'seg_nms_thresh': 0.5,
'seg_overlap_ratio': 0.3,
'seg_points_per_batch': 64,
'seg_topK': 50,
'seg_colormap': 'pink',
'preview_type': 'Composite',
'seg_live': True,
'weight_original': 0.5,
'weight_mask': 0.5,
'kernel_iterations': 1,
'invert': False
})
def init_model(selected_model: str):
global busy, generator # pylint: disable=global-statement
model_path = MODELS[selected_model]
if model_path is None: # none
if generator is not None:
shared.log.debug('Mask segment unloading model')
opts.model = None
generator = None
devices.torch_gc()
return selected_model
if 'Rembg' in selected_model: # rembg
opts.model = model_path
generator = None
devices.torch_gc()
return selected_model
if opts.model != selected_model or generator is None: # sam pipeline
busy = True
t0 = time.time()
shared.log.debug(f'Mask segment loading: model={selected_model} path={model_path}')
model = SamModel.from_pretrained(model_path, cache_dir=cache_dir).to(device=devices.device)
processor = SamImageProcessor.from_pretrained(model_path, cache_dir=cache_dir)
generator = MaskGenerationPipeline(
model=model,
image_processor=processor,
device=devices.device,
# output_bboxes_mask=False,
# output_rle_masks=False,
)
devices.torch_gc()
shared.log.debug(f'Mask segment loaded: model={selected_model} path={model_path} time={time.time()-t0:.2f}s')
opts.model = selected_model
busy = False
return selected_model
def run_segment(input_image: gr.Image, input_mask: np.ndarray):
outputs = None
with devices.inference_context():
try:
outputs = generator(
input_image,
points_per_batch=opts.seg_points_per_batch,
pred_iou_thresh=opts.seg_iou_thresh,
stability_score_thresh=opts.seg_score_thresh,
crops_nms_thresh=opts.seg_nms_thresh,
crop_overlap_ratio=opts.seg_overlap_ratio,
crops_n_layers=0,
crop_n_points_downscale_factor=1,
)
except Exception as e:
shared.log.error(f'Mask segment error: {e}')
errors.display(e, 'Mask segment')
return outputs
devices.torch_gc()
i = 1
combined_mask = np.zeros(input_mask.shape, dtype='uint8')
input_mask_size = np.count_nonzero(input_mask)
debug(f'Segment SAM: {vars(opts)}')
for mask in outputs['masks']:
mask = mask.astype('uint8')
mask_size = np.count_nonzero(mask)
if mask_size == 0:
continue
overlap = 0
if input_mask_size > 0:
if mask.shape != input_mask.shape:
mask = cv2.resize(mask, (input_mask.shape[1], input_mask.shape[0]), interpolation=cv2.INTER_CUBIC)
overlap = cv2.bitwise_and(mask, input_mask)
overlap = np.count_nonzero(overlap)
if overlap == 0:
continue
mask = (opts.seg_topK + 1 - i) * mask * (255 // opts.seg_topK) # set grayscale intensity so we can recolor
combined_mask = combined_mask + mask
debug(f'Segment mask: i={i} size={input_image.width}x{input_image.height} masked={mask_size}px overlap={overlap} score={outputs["scores"][i-1]:.2f}')
i += 1
if i > opts.seg_topK:
break
return combined_mask
def run_rembg(input_image: Image, input_mask: np.ndarray):
try:
import rembg
except Exception as e:
shared.log.error(f'Mask Rembg load failed: {e}')
return input_mask
if "U2NET_HOME" not in os.environ:
os.environ["U2NET_HOME"] = os.path.join(paths.models_path, "Rembg")
args = {
'data': input_image,
'only_mask': True,
'post_process_mask': False,
'bgcolor': None,
'alpha_matting': False,
'alpha_matting_foreground_threshold': 240,
'alpha_matting_background_threshold': 10,
'alpha_matting_erode_size': int(opts.mask_erode * 40),
'session': rembg.new_session(opts.model),
}
mask = rembg.remove(**args)
mask = np.array(mask)
if len(input_mask.shape) > 2:
mask = cv2.cvtColor(input_mask, cv2.COLOR_RGB2GRAY)
binary_input = cv2.threshold(input_mask, 127, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
binary_output = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
if binary_input.shape != binary_output.shape:
binary_output = cv2.resize(binary_output, binary_input.shape[:2], interpolation=cv2.INTER_LINEAR)
binary_overlap = cv2.bitwise_and(binary_input, binary_output)
input_size = np.count_nonzero(binary_input)
overlap_size = np.count_nonzero(binary_overlap)
debug(f'Segment Rembg: {args} overlap={overlap_size}')
if input_size > 0 and overlap_size == 0:
mask = np.invert(mask)
return mask
def get_mask(input_image: gr.Image, input_mask: gr.Image):
t0 = time.time()
if input_mask is not None:
output_mask = np.array(input_mask)
if len(output_mask.shape) > 2:
output_mask = cv2.cvtColor(output_mask, cv2.COLOR_RGB2GRAY)
binary_mask = cv2.threshold(output_mask, 127, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
mask_size = np.count_nonzero(binary_mask)
else:
output_mask = None
mask_size = 0
if mask_size == 0 and opts.auto_mask != 'None': # mask_size == 0
output_mask = np.array(input_image)
if opts.auto_mask == 'Threshold':
output_mask = cv2.cvtColor(output_mask, cv2.COLOR_RGB2GRAY)
output_mask = cv2.threshold(output_mask, 127, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
elif opts.auto_mask == 'Edge':
output_mask = cv2.cvtColor(output_mask, cv2.COLOR_RGB2GRAY)
output_mask = cv2.threshold(output_mask, 127, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
# output_mask = cv2.Canny(output_mask, 50, 150) # run either canny or threshold before contouring
contours, _hierarchy = cv2.findContours(output_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours = sorted(contours, key=cv2.contourArea, reverse=True) # sort contours by area with largest first
contours = contours[:opts.seg_topK] # limit to top K contours
output_mask = np.zeros(output_mask.shape, dtype='uint8')
largest_size = cv2.contourArea(contours[0]) if len(contours) > 0 else 0
for i, contour in enumerate(contours):
area_size = cv2.contourArea(contour)
luminance = int(255.0 * area_size / largest_size)
if luminance < 1:
break
cv2.drawContours(output_mask, contours, i, (luminance), -1)
elif opts.auto_mask == 'Grayscale':
lab_image = cv2.cvtColor(output_mask, cv2.COLOR_RGB2LAB)
l_channel, a, b = cv2.split(lab_image)
clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)) # applying CLAHE to L-channel
cl = clahe.apply(l_channel)
lab_image = cv2.merge((cl, a, b)) # merge the CLAHE enhanced L-channel with the a and b channel
lab_image = cv2.cvtColor(lab_image, cv2.COLOR_LAB2RGB)
output_mask = cv2.cvtColor(lab_image, cv2.COLOR_RGB2GRAY)
t1 = time.time()
debug(f'Segment auto-mask: mode={opts.auto_mask} time={t1-t0:.2f}')
return output_mask
else: # no mask or empty mask and no auto-mask
return output_mask
def outpaint(input_image: Image.Image, outpaint_type: str = 'Edge'):
image = cv2.cvtColor(np.array(input_image), cv2.COLOR_RGB2BGR)
h0, w0 = image.shape[:2]
empty = (image == 0).all(axis=2)
y0, x0 = np.where(~empty) # non empty
x1, x2 = min(x0), max(x0)
y1, y2 = min(y0), max(y0)
cropped = image[y1:y2, x1:x2]
h1, w1 = cropped.shape[:2]
mask = None
if opts.mask_only:
mask = cv2.copyMakeBorder(cropped, y1, h0-y2, x1, w0-x2, cv2.BORDER_CONSTANT, value=(0, 0, 0))
mask = cv2.resize(mask, (w0, h0))
mask = cv2.cvtColor(np.array(mask), cv2.COLOR_BGR2GRAY)
mask = cv2.threshold(mask, 0, 255, cv2.THRESH_BINARY)[1]
sigmaX, sigmaY = int((h0-h1)/3), int((w0-w1)/3)
kernel = np.ones((5, 5), np.uint8)
mask = cv2.erode(mask, kernel, iterations=max(sigmaX, sigmaY) // 3) # increase overlap area
mask = cv2.GaussianBlur(mask, (0, 0), sigmaX=sigmaX, sigmaY=sigmaY) # blur mask
mask = Image.fromarray(mask)
if outpaint_type == 'Edge':
bordered = cv2.copyMakeBorder(cropped, y1, h0-y2, x1, w0-x2, cv2.BORDER_REPLICATE)
bordered = cv2.resize(bordered, (w0, h0))
image = bordered
# noise = np.random.normal(1, variation, bordered.shape)
# noised = (noise * bordered).astype(np.uint8)
# h, w = cropped.shape[:2]
# noised[y1:y1 + h, x1:x1 + w] = cropped # overlay original over initialized
# image = noised
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = Image.fromarray(image)
return image, mask
def run_mask(input_image: Image.Image, input_mask: Image.Image = None, return_type: str = None, mask_blur: int = None, mask_padding: int = None, segment_enable=True, invert=None):
debug(f'Run mask: fn={sys._getframe(1).f_code.co_name}') # pylint: disable=protected-access
if input_image is None:
return input_mask
if isinstance(input_image, list):
input_image = input_image[0]
if isinstance(input_image, dict):
input_mask = input_image.get('mask', None)
input_image = input_image.get('image', None)
if input_image is None:
return input_mask
t0 = time.time()
input_mask = get_mask(input_image, input_mask) # perform optional auto-masking
if input_mask is None:
return None
size = min(input_image.width, input_image.height)
if mask_blur is not None or mask_padding is not None:
debug(f'Mask args legacy: blur={mask_blur} padding={mask_padding}')
if invert is not None:
opts.invert = invert
if mask_blur is not None: # compatibility with old img2img values which uses px values
opts.mask_blur = round(4 * mask_blur / size, 3)
if mask_padding is not None: # compatibility with old img2img values which uses px values
opts.mask_dilate = 4 * mask_padding / size
if opts.model is None or not segment_enable:
mask = input_mask
elif generator is None:
mask = run_rembg(input_image, input_mask)
else:
mask = run_segment(input_image, input_mask)
mask = cv2.resize(mask, (input_image.width, input_image.height), interpolation=cv2.INTER_LINEAR)
debug(f'Mask shape={mask.shape} opts={opts}')
if opts.mask_erode > 0:
try:
kernel = np.ones((int(opts.mask_erode * size / 4) + 1, int(opts.mask_erode * size / 4) + 1), np.uint8)
mask = cv2.erode(mask, kernel, iterations=opts.kernel_iterations) # remove noise
debug(f'Mask erode={opts.mask_erode:.3f} kernel={kernel.shape} mask={mask.shape}')
except Exception as e:
shared.log.error(f'Mask erode: {e}')
if opts.mask_dilate > 0:
try:
kernel = np.ones((int(opts.mask_dilate * size / 4) + 1, int(opts.mask_dilate * size / 4) + 1), np.uint8)
mask = cv2.dilate(mask, kernel, iterations=opts.kernel_iterations) # expand area
debug(f'Mask dilate={opts.mask_dilate:.3f} kernel={kernel.shape} mask={mask.shape}')
except Exception as e:
shared.log.error(f'Mask dilate: {e}')
if opts.mask_blur > 0:
try:
sigmax, sigmay = 1 + int(opts.mask_blur * size / 4), 1 + int(opts.mask_blur * size / 4)
mask = cv2.GaussianBlur(mask, (0, 0), sigmaX=sigmax, sigmaY=sigmay) # blur mask
debug(f'Mask blur={opts.mask_blur:.3f} x={sigmax} y={sigmay} mask={mask.shape}')
except Exception as e:
shared.log.error(f'Mask blur: {e}')
if opts.invert:
mask = np.invert(mask)
mask_size = np.count_nonzero(mask)
total_size = np.prod(mask.shape)
area_size = np.count_nonzero(mask)
t1 = time.time()
return_type = return_type or opts.preview_type
shared.log.debug(f'Mask: size={input_image.width}x{input_image.height} masked={mask_size}px area={area_size/total_size:.2f} auto={opts.auto_mask} blur={opts.mask_blur} erode={opts.mask_erode} dilate={opts.mask_dilate} type={return_type} time={t1-t0:.2f}')
if return_type == 'None':
return input_mask
elif return_type == 'Opaque':
binary_mask = cv2.threshold(mask, 0, 255, cv2.THRESH_BINARY)[1]
return Image.fromarray(binary_mask)
elif return_type == 'Binary':
binary_mask = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1] # otsu uses mean instead of threshold
return Image.fromarray(binary_mask)
elif return_type == 'Masked':
orig = np.array(input_image)
mask = cv2.cvtColor(mask, cv2.COLOR_GRAY2RGB)
masked_image = cv2.bitwise_and(orig, mask)
return Image.fromarray(masked_image)
elif return_type == 'Grayscale':
return Image.fromarray(mask)
elif return_type == 'Color':
colored_mask = cv2.applyColorMap(mask, COLORMAP.index(opts.seg_colormap)) # recolor mask
return Image.fromarray(colored_mask)
elif return_type == 'Composite':
colored_mask = cv2.applyColorMap(mask, COLORMAP.index(opts.seg_colormap)) # recolor mask
orig = np.array(input_image)
combined_image = cv2.addWeighted(orig, opts.weight_original, colored_mask, opts.weight_mask, 0)
return Image.fromarray(combined_image)
else:
shared.log.error(f'Mask unknown return type: {return_type}')
return input_mask
def run_lama(input_image: gr.Image, input_mask: gr.Image = None):
global lama_model # pylint: disable=global-statement
if isinstance(input_image, dict):
input_mask = input_image.get('mask', None)
input_image = input_image.get('image', None)
if input_image is None:
return None
input_mask = run_mask(input_image, input_mask, return_type='Grayscale')
if lama_model is None:
import modules.lama
shared.log.debug(f'Mask LaMa loading: model={modules.lama.LAMA_MODEL_URL}')
lama_model = modules.lama.SimpleLama()
shared.log.debug(f'Mask LaMa loaded: {memory_stats()}')
sd_models.move_model(lama_model.model, devices.device)
result = lama_model(input_image, input_mask)
if shared.opts.control_move_processor:
lama_model.model.to('cpu')
return result
def run_mask_live(input_image: gr.Image):
global busy # pylint: disable=global-statement
if opts.seg_live:
if not busy:
busy = True
res = run_mask(input_image)
busy = False
return res
else:
return None
def create_segment_ui():
def update_opts(*args):
opts.seg_live = args[0]
opts.mask_only = args[1]
opts.invert = args[2]
opts.mask_blur = args[3]
opts.mask_erode = args[4]
opts.mask_dilate = args[5]
opts.auto_mask = args[6]
opts.seg_score_thresh = args[7]
opts.seg_iou_thresh = args[8]
opts.seg_nms_thresh = args[9]
opts.preview_type = args[10]
opts.seg_colormap = args[11]
global btn_mask, btn_lama # pylint: disable=global-statement
with gr.Accordion(open=False, label="Mask", elem_id="control_mask", elem_classes=["small-accordion"]):
controls.clear()
with gr.Row():
controls.append(gr.Checkbox(label="Live update", value=True))
btn_mask = ui_components.ToolButton(value=ui_symbols.refresh, visible=True)
btn_lama = ui_components.ToolButton(value=ui_symbols.image, visible=True)
with gr.Row():
controls.append(gr.Checkbox(label="Inpaint masked only", value=False))
controls.append(gr.Checkbox(label="Invert mask", value=False))
with gr.Row():
controls.append(gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Blur', value=0.01, elem_id="control_mask_blur"))
controls.append(gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Erode', value=0.01, elem_id="control_mask_erode"))
controls.append(gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Dilate', value=0.01, elem_id="control_mask_dilate"))
with gr.Row():
controls.append(gr.Dropdown(label="Auto-mask", choices=['None', 'Threshold', 'Edge', 'Grayscale'], value='None'))
selected_model = gr.Dropdown(label="Auto-segment", choices=MODELS.keys(), value='None')
with gr.Row():
controls.append(gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Score', value=0.5, visible=False))
controls.append(gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='IOU', value=0.5, visible=False))
controls.append(gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='NMS', value=0.5, visible=False))
with gr.Row():
controls.append(gr.Dropdown(label="Preview", choices=['None', 'Masked', 'Binary', 'Grayscale', 'Color', 'Composite'], value='Composite'))
controls.append(gr.Dropdown(label="Colormap", choices=COLORMAP, value='pink'))
selected_model.change(fn=init_model, inputs=[selected_model], outputs=[selected_model])
for control in controls:
control.change(fn=update_opts, inputs=controls, outputs=[])
return controls
def bind_controls(image_controls: List[gr.Image], preview_image: gr.Image, output_image: gr.Image):
for image_control in image_controls:
btn_mask.click(run_mask, inputs=[image_control], outputs=[preview_image])
btn_lama.click(run_lama, inputs=[image_control], outputs=[output_image])
image_control.edit(fn=run_mask_live, inputs=[image_control], outputs=[preview_image])
for control in controls:
control.change(fn=run_mask_live, inputs=[image_control], outputs=[preview_image])
|