File size: 24,053 Bytes
c19ca42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
from types import SimpleNamespace
from typing import List
import os
import sys
import time
import gradio as gr
import numpy as np
import cv2
from PIL import Image, ImageFilter, ImageOps
from transformers import SamModel, SamImageProcessor, MaskGenerationPipeline
from modules import shared, errors, devices, ui_components, ui_symbols, paths, sd_models
from modules.memstats import memory_stats


debug = shared.log.trace if os.environ.get('SD_MASK_DEBUG', None) is not None else lambda *args, **kwargs: None
debug('Trace: MASK')


def get_crop_region(mask, pad=0):
    """finds a rectangular region that contains all masked ares in an image. Returns (x1, y1, x2, y2) coordinates of the rectangle.
    For example, if a user has painted the top-right part of a 512x512 image", the result may be (256, 0, 512, 256)"""
    h, w = mask.shape
    crop_left = 0
    for i in range(w):
        if not (mask[:, i] == 0).all():
            break
        crop_left += 1
    crop_right = 0
    for i in reversed(range(w)):
        if not (mask[:, i] == 0).all():
            break
        crop_right += 1
    crop_top = 0
    for i in range(h):
        if not (mask[i] == 0).all():
            break
        crop_top += 1
    crop_bottom = 0
    for i in reversed(range(h)):
        if not (mask[i] == 0).all():
            break
        crop_bottom += 1
    x1 = max(crop_left - pad, 0)
    y1 = max(crop_top - pad, 0)
    x2 = max(w - crop_right + pad, 0)
    y2 = max(h - crop_bottom + pad, 0)
    if x2 < x1:
        x1, x2 = x2, x1
    if y2 < y1:
        y1, y2 = y2, y1
    crop_region = (
        int(min(x1, w)),
        int(min(y1, h)),
        int(min(x2, w)),
        int(min(y2, h)),
    )
    debug(f'Mask crop: mask={w, h} region={crop_region} pad={pad}')
    return crop_region


def expand_crop_region(crop_region, processing_width, processing_height, image_width, image_height):
    """expands crop region get_crop_region() to match the ratio of the image the region will processed in; returns expanded region
    for example, if user drew mask in a 128x32 region, and the dimensions for processing are 512x512, the region will be expanded to 128x128."""
    x1, y1, x2, y2 = crop_region
    ratio_crop_region = (x2 - x1) / (y2 - y1)
    ratio_processing = processing_width / processing_height

    if ratio_crop_region > ratio_processing:
        desired_height = (x2 - x1) / ratio_processing
        desired_height_diff = int(desired_height - (y2-y1))
        y1 -= desired_height_diff//2
        y2 += desired_height_diff - desired_height_diff//2
        if y2 >= image_height:
            diff = y2 - image_height
            y2 -= diff
            y1 -= diff
        if y1 < 0:
            y2 -= y1
            y1 -= y1
        if y2 >= image_height:
            y2 = image_height
    else:
        desired_width = (y2 - y1) * ratio_processing
        desired_width_diff = int(desired_width - (x2-x1))
        x1 -= desired_width_diff//2
        x2 += desired_width_diff - desired_width_diff//2
        if x2 >= image_width:
            diff = x2 - image_width
            x2 -= diff
            x1 -= diff
        if x1 < 0:
            x2 -= x1
            x1 -= x1
        if x2 >= image_width:
            x2 = image_width
    crop_expand = (
        int(x1),
        int(y1),
        int(x2),
        int(y2),
    )
    debug(f'Mask expand: image={image_width, image_height} processing={processing_width, processing_height} region={crop_expand}')
    return crop_expand


def fill(image, mask):
    """fills masked regions with colors from image using blur. Not extremely effective."""
    image_mod = Image.new('RGBA', (image.width, image.height))
    image_masked = Image.new('RGBa', (image.width, image.height))
    image_masked.paste(image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(mask.convert('L')))
    image_masked = image_masked.convert('RGBa')
    for radius, repeats in [(256, 1), (64, 1), (16, 2), (4, 4), (2, 2), (0, 1)]:
        blurred = image_masked.filter(ImageFilter.GaussianBlur(radius)).convert('RGBA')
        for _ in range(repeats):
            image_mod.alpha_composite(blurred)
    return image_mod.convert("RGB")


"""
[docs](https://huggingface.co/docs/transformers/v4.36.1/en/model_doc/sam#overview)
TODO:
- PerSAM
- REMBG
- https://huggingface.co/docs/transformers/tasks/semantic_segmentation
- transformers.pipeline.MaskGenerationPipeline: https://huggingface.co/models?pipeline_tag=mask-generation
- transformers.pipeline.ImageSegmentationPipeline: https://huggingface.co/models?pipeline_tag=image-segmentation
"""

MODELS = {
    'None': None,
    'Facebook SAM ViT Base': 'facebook/sam-vit-base',
    'Facebook SAM ViT Large': 'facebook/sam-vit-large',
    'Facebook SAM ViT Huge': 'facebook/sam-vit-huge',
    'SlimSAM Uniform': 'Zigeng/SlimSAM-uniform-50',
    'SlimSAM Uniform Tiny': 'Zigeng/SlimSAM-uniform-77',
    'Rembg Silueta': 'silueta',
    'Rembg U2Net': 'u2net',
    'Rembg ISNet': 'isnet',
    # "u2net_human_seg",
    # "isnet-general-use",
    # "isnet-anime",
}
COLORMAP = ['autumn', 'bone', 'jet', 'winter', 'rainbow', 'ocean', 'summer', 'spring', 'cool', 'hsv', 'pink', 'hot', 'parula', 'magma', 'inferno', 'plasma', 'viridis', 'cividis', 'twilight', 'shifted', 'turbo', 'deepgreen']
TYPES = ['None', 'Opaque', 'Binary', 'Masked', 'Grayscale', 'Color', 'Composite']
cache_dir = 'models/control/segment'
generator: MaskGenerationPipeline = None
busy = False
btn_mask = None
btn_lama = None
lama_model = None
controls = []
opts = SimpleNamespace(**{
    'model': None,
    'auto_mask': 'None',
    'mask_only': False,
    'mask_blur': 0.01,
    'mask_erode': 0.01,
    'mask_dilate': 0.01,
    'seg_iou_thresh': 0.5,
    'seg_score_thresh': 0.5,
    'seg_nms_thresh': 0.5,
    'seg_overlap_ratio': 0.3,
    'seg_points_per_batch': 64,
    'seg_topK': 50,
    'seg_colormap': 'pink',
    'preview_type': 'Composite',
    'seg_live': True,
    'weight_original': 0.5,
    'weight_mask': 0.5,
    'kernel_iterations': 1,
    'invert': False
})


def init_model(selected_model: str):
    global busy, generator # pylint: disable=global-statement
    model_path = MODELS[selected_model]
    if model_path is None: # none
        if generator is not None:
            shared.log.debug('Mask segment unloading model')
        opts.model = None
        generator = None
        devices.torch_gc()
        return selected_model
    if 'Rembg' in selected_model: # rembg
        opts.model = model_path
        generator = None
        devices.torch_gc()
        return selected_model
    if opts.model != selected_model or generator is None: # sam pipeline
        busy = True
        t0 = time.time()
        shared.log.debug(f'Mask segment loading: model={selected_model} path={model_path}')
        model = SamModel.from_pretrained(model_path, cache_dir=cache_dir).to(device=devices.device)
        processor = SamImageProcessor.from_pretrained(model_path, cache_dir=cache_dir)
        generator = MaskGenerationPipeline(
            model=model,
            image_processor=processor,
            device=devices.device,
            # output_bboxes_mask=False,
            # output_rle_masks=False,
        )
        devices.torch_gc()
        shared.log.debug(f'Mask segment loaded: model={selected_model} path={model_path} time={time.time()-t0:.2f}s')
        opts.model = selected_model
        busy = False
    return selected_model


def run_segment(input_image: gr.Image, input_mask: np.ndarray):
    outputs = None
    with devices.inference_context():
        try:
            outputs = generator(
                input_image,
                points_per_batch=opts.seg_points_per_batch,
                pred_iou_thresh=opts.seg_iou_thresh,
                stability_score_thresh=opts.seg_score_thresh,
                crops_nms_thresh=opts.seg_nms_thresh,
                crop_overlap_ratio=opts.seg_overlap_ratio,
                crops_n_layers=0,
                crop_n_points_downscale_factor=1,
            )
        except Exception as e:
            shared.log.error(f'Mask segment error: {e}')
            errors.display(e, 'Mask segment')
            return outputs
    devices.torch_gc()
    i = 1
    combined_mask = np.zeros(input_mask.shape, dtype='uint8')
    input_mask_size = np.count_nonzero(input_mask)
    debug(f'Segment SAM: {vars(opts)}')
    for mask in outputs['masks']:
        mask = mask.astype('uint8')
        mask_size = np.count_nonzero(mask)
        if mask_size == 0:
            continue
        overlap = 0
        if input_mask_size > 0:
            if mask.shape != input_mask.shape:
                mask = cv2.resize(mask, (input_mask.shape[1], input_mask.shape[0]), interpolation=cv2.INTER_CUBIC)
            overlap = cv2.bitwise_and(mask, input_mask)
            overlap = np.count_nonzero(overlap)
            if overlap == 0:
                continue
        mask = (opts.seg_topK + 1 - i) * mask * (255 // opts.seg_topK) # set grayscale intensity so we can recolor
        combined_mask = combined_mask + mask
        debug(f'Segment mask: i={i} size={input_image.width}x{input_image.height} masked={mask_size}px overlap={overlap} score={outputs["scores"][i-1]:.2f}')
        i += 1
        if i > opts.seg_topK:
            break
    return combined_mask


def run_rembg(input_image: Image, input_mask: np.ndarray):
    try:
        import rembg
    except Exception as e:
        shared.log.error(f'Mask Rembg load failed: {e}')
        return input_mask
    if "U2NET_HOME" not in os.environ:
        os.environ["U2NET_HOME"] = os.path.join(paths.models_path, "Rembg")
    args = {
        'data': input_image,
        'only_mask': True,
        'post_process_mask': False,
        'bgcolor': None,
        'alpha_matting': False,
        'alpha_matting_foreground_threshold': 240,
        'alpha_matting_background_threshold': 10,
        'alpha_matting_erode_size': int(opts.mask_erode * 40),
        'session': rembg.new_session(opts.model),
    }
    mask = rembg.remove(**args)
    mask = np.array(mask)
    if len(input_mask.shape) > 2:
        mask = cv2.cvtColor(input_mask, cv2.COLOR_RGB2GRAY)
    binary_input = cv2.threshold(input_mask, 127, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
    binary_output = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
    if binary_input.shape != binary_output.shape:
        binary_output = cv2.resize(binary_output, binary_input.shape[:2], interpolation=cv2.INTER_LINEAR)
    binary_overlap = cv2.bitwise_and(binary_input, binary_output)
    input_size = np.count_nonzero(binary_input)
    overlap_size = np.count_nonzero(binary_overlap)
    debug(f'Segment Rembg: {args} overlap={overlap_size}')
    if input_size > 0 and overlap_size == 0:
        mask = np.invert(mask)
    return mask


def get_mask(input_image: gr.Image, input_mask: gr.Image):
    t0 = time.time()
    if input_mask is not None:
        output_mask = np.array(input_mask)
        if len(output_mask.shape) > 2:
            output_mask = cv2.cvtColor(output_mask, cv2.COLOR_RGB2GRAY)
        binary_mask = cv2.threshold(output_mask, 127, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
        mask_size = np.count_nonzero(binary_mask)
    else:
        output_mask = None
        mask_size = 0
    if mask_size == 0 and opts.auto_mask != 'None': # mask_size == 0
        output_mask = np.array(input_image)
        if opts.auto_mask == 'Threshold':
            output_mask = cv2.cvtColor(output_mask, cv2.COLOR_RGB2GRAY)
            output_mask = cv2.threshold(output_mask, 127, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
        elif opts.auto_mask == 'Edge':
            output_mask = cv2.cvtColor(output_mask, cv2.COLOR_RGB2GRAY)
            output_mask = cv2.threshold(output_mask, 127, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
            # output_mask = cv2.Canny(output_mask, 50, 150) # run either canny or threshold before contouring
            contours, _hierarchy = cv2.findContours(output_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
            contours = sorted(contours, key=cv2.contourArea, reverse=True) # sort contours by area with largest first
            contours = contours[:opts.seg_topK] # limit to top K contours
            output_mask = np.zeros(output_mask.shape, dtype='uint8')
            largest_size = cv2.contourArea(contours[0]) if len(contours) > 0 else 0
            for i, contour in enumerate(contours):
                area_size = cv2.contourArea(contour)
                luminance = int(255.0 * area_size / largest_size)
                if luminance < 1:
                    break
                cv2.drawContours(output_mask, contours, i, (luminance), -1)
        elif opts.auto_mask == 'Grayscale':
            lab_image = cv2.cvtColor(output_mask, cv2.COLOR_RGB2LAB)
            l_channel, a, b = cv2.split(lab_image)
            clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8)) # applying CLAHE to L-channel
            cl = clahe.apply(l_channel)
            lab_image = cv2.merge((cl, a, b)) # merge the CLAHE enhanced L-channel with the a and b channel
            lab_image = cv2.cvtColor(lab_image, cv2.COLOR_LAB2RGB)
            output_mask = cv2.cvtColor(lab_image, cv2.COLOR_RGB2GRAY)
        t1 = time.time()
        debug(f'Segment auto-mask: mode={opts.auto_mask} time={t1-t0:.2f}')
        return output_mask
    else: # no mask or empty mask and no auto-mask
        return output_mask


def outpaint(input_image: Image.Image, outpaint_type: str = 'Edge'):
    image = cv2.cvtColor(np.array(input_image), cv2.COLOR_RGB2BGR)
    h0, w0 = image.shape[:2]
    empty = (image == 0).all(axis=2)
    y0, x0 = np.where(~empty) # non empty
    x1, x2 = min(x0), max(x0)
    y1, y2 = min(y0), max(y0)
    cropped = image[y1:y2, x1:x2]
    h1, w1 = cropped.shape[:2]
    mask = None

    if opts.mask_only:
        mask = cv2.copyMakeBorder(cropped, y1, h0-y2, x1, w0-x2, cv2.BORDER_CONSTANT, value=(0, 0, 0))
        mask = cv2.resize(mask, (w0, h0))
        mask = cv2.cvtColor(np.array(mask), cv2.COLOR_BGR2GRAY)
        mask = cv2.threshold(mask, 0, 255, cv2.THRESH_BINARY)[1]
        sigmaX, sigmaY = int((h0-h1)/3), int((w0-w1)/3)
        kernel = np.ones((5, 5), np.uint8)
        mask = cv2.erode(mask, kernel, iterations=max(sigmaX, sigmaY) // 3) # increase overlap area
        mask = cv2.GaussianBlur(mask, (0, 0), sigmaX=sigmaX, sigmaY=sigmaY) # blur mask
        mask = Image.fromarray(mask)

    if outpaint_type == 'Edge':
        bordered = cv2.copyMakeBorder(cropped, y1, h0-y2, x1, w0-x2, cv2.BORDER_REPLICATE)
        bordered = cv2.resize(bordered, (w0, h0))
        image = bordered
        # noise = np.random.normal(1, variation, bordered.shape)
        # noised = (noise * bordered).astype(np.uint8)
        # h, w = cropped.shape[:2]
        # noised[y1:y1 + h, x1:x1 + w] = cropped # overlay original over initialized
        # image = noised

    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    image = Image.fromarray(image)
    return image, mask


def run_mask(input_image: Image.Image, input_mask: Image.Image = None, return_type: str = None, mask_blur: int = None, mask_padding: int = None, segment_enable=True, invert=None):
    debug(f'Run mask: fn={sys._getframe(1).f_code.co_name}') # pylint: disable=protected-access

    if input_image is None:
        return input_mask
    if isinstance(input_image, list):
        input_image = input_image[0]
    if isinstance(input_image, dict):
        input_mask = input_image.get('mask', None)
        input_image = input_image.get('image', None)
    if input_image is None:
        return input_mask

    t0 = time.time()
    input_mask = get_mask(input_image, input_mask) # perform optional auto-masking
    if input_mask is None:
        return None

    size = min(input_image.width, input_image.height)
    if mask_blur is not None or mask_padding is not None:
        debug(f'Mask args legacy: blur={mask_blur} padding={mask_padding}')
    if invert is not None:
        opts.invert = invert
    if mask_blur is not None: # compatibility with old img2img values which uses px values
        opts.mask_blur = round(4 * mask_blur / size, 3)
    if mask_padding is not None: # compatibility with old img2img values which uses px values
        opts.mask_dilate = 4 * mask_padding / size

    if opts.model is None or not segment_enable:
        mask = input_mask
    elif generator is None:
        mask = run_rembg(input_image, input_mask)
    else:
        mask = run_segment(input_image, input_mask)
    mask = cv2.resize(mask, (input_image.width, input_image.height), interpolation=cv2.INTER_LINEAR)

    debug(f'Mask shape={mask.shape} opts={opts}')
    if opts.mask_erode > 0:
        try:
            kernel = np.ones((int(opts.mask_erode * size / 4) + 1, int(opts.mask_erode * size / 4) + 1), np.uint8)
            mask = cv2.erode(mask, kernel, iterations=opts.kernel_iterations) # remove noise
            debug(f'Mask erode={opts.mask_erode:.3f} kernel={kernel.shape} mask={mask.shape}')
        except Exception as e:
            shared.log.error(f'Mask erode: {e}')
    if opts.mask_dilate > 0:
        try:
            kernel = np.ones((int(opts.mask_dilate * size / 4) + 1, int(opts.mask_dilate * size / 4) + 1), np.uint8)
            mask = cv2.dilate(mask, kernel, iterations=opts.kernel_iterations) # expand area
            debug(f'Mask dilate={opts.mask_dilate:.3f} kernel={kernel.shape} mask={mask.shape}')
        except Exception as e:
            shared.log.error(f'Mask dilate: {e}')
    if opts.mask_blur > 0:
        try:
            sigmax, sigmay = 1 + int(opts.mask_blur * size / 4), 1 + int(opts.mask_blur * size / 4)
            mask = cv2.GaussianBlur(mask, (0, 0), sigmaX=sigmax, sigmaY=sigmay) # blur mask
            debug(f'Mask blur={opts.mask_blur:.3f} x={sigmax} y={sigmay} mask={mask.shape}')
        except Exception as e:
            shared.log.error(f'Mask blur: {e}')
    if opts.invert:
        mask = np.invert(mask)

    mask_size = np.count_nonzero(mask)
    total_size = np.prod(mask.shape)
    area_size = np.count_nonzero(mask)
    t1 = time.time()

    return_type = return_type or opts.preview_type

    shared.log.debug(f'Mask: size={input_image.width}x{input_image.height} masked={mask_size}px area={area_size/total_size:.2f} auto={opts.auto_mask} blur={opts.mask_blur} erode={opts.mask_erode} dilate={opts.mask_dilate} type={return_type} time={t1-t0:.2f}')
    if return_type == 'None':
        return input_mask
    elif return_type == 'Opaque':
        binary_mask = cv2.threshold(mask, 0, 255, cv2.THRESH_BINARY)[1]
        return Image.fromarray(binary_mask)
    elif return_type == 'Binary':
        binary_mask = cv2.threshold(mask, 127, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1] # otsu uses mean instead of threshold
        return Image.fromarray(binary_mask)
    elif return_type == 'Masked':
        orig = np.array(input_image)
        mask = cv2.cvtColor(mask, cv2.COLOR_GRAY2RGB)
        masked_image = cv2.bitwise_and(orig, mask)
        return Image.fromarray(masked_image)
    elif return_type == 'Grayscale':
        return Image.fromarray(mask)
    elif return_type == 'Color':
        colored_mask = cv2.applyColorMap(mask, COLORMAP.index(opts.seg_colormap)) # recolor mask
        return Image.fromarray(colored_mask)
    elif return_type == 'Composite':
        colored_mask = cv2.applyColorMap(mask, COLORMAP.index(opts.seg_colormap)) # recolor mask
        orig = np.array(input_image)
        combined_image = cv2.addWeighted(orig, opts.weight_original, colored_mask, opts.weight_mask, 0)
        return Image.fromarray(combined_image)
    else:
        shared.log.error(f'Mask unknown return type: {return_type}')
    return input_mask


def run_lama(input_image: gr.Image, input_mask: gr.Image = None):
    global lama_model # pylint: disable=global-statement
    if isinstance(input_image, dict):
        input_mask = input_image.get('mask', None)
        input_image = input_image.get('image', None)
    if input_image is None:
        return None
    input_mask = run_mask(input_image, input_mask, return_type='Grayscale')
    if lama_model is None:
        import modules.lama
        shared.log.debug(f'Mask LaMa loading: model={modules.lama.LAMA_MODEL_URL}')
        lama_model = modules.lama.SimpleLama()
        shared.log.debug(f'Mask LaMa loaded: {memory_stats()}')
    sd_models.move_model(lama_model.model, devices.device)

    result = lama_model(input_image, input_mask)
    if shared.opts.control_move_processor:
        lama_model.model.to('cpu')
    return result


def run_mask_live(input_image: gr.Image):
    global busy # pylint: disable=global-statement
    if opts.seg_live:
        if not busy:
            busy = True
            res = run_mask(input_image)
            busy = False
            return res
    else:
        return None


def create_segment_ui():
    def update_opts(*args):
        opts.seg_live = args[0]
        opts.mask_only = args[1]
        opts.invert = args[2]
        opts.mask_blur = args[3]
        opts.mask_erode = args[4]
        opts.mask_dilate = args[5]
        opts.auto_mask = args[6]
        opts.seg_score_thresh = args[7]
        opts.seg_iou_thresh = args[8]
        opts.seg_nms_thresh = args[9]
        opts.preview_type = args[10]
        opts.seg_colormap = args[11]

    global btn_mask, btn_lama # pylint: disable=global-statement
    with gr.Accordion(open=False, label="Mask", elem_id="control_mask", elem_classes=["small-accordion"]):
        controls.clear()
        with gr.Row():
            controls.append(gr.Checkbox(label="Live update", value=True))
            btn_mask = ui_components.ToolButton(value=ui_symbols.refresh, visible=True)
            btn_lama = ui_components.ToolButton(value=ui_symbols.image, visible=True)
        with gr.Row():
            controls.append(gr.Checkbox(label="Inpaint masked only", value=False))
            controls.append(gr.Checkbox(label="Invert mask", value=False))
        with gr.Row():
            controls.append(gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Blur', value=0.01, elem_id="control_mask_blur"))
            controls.append(gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Erode', value=0.01, elem_id="control_mask_erode"))
            controls.append(gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Dilate', value=0.01, elem_id="control_mask_dilate"))
        with gr.Row():
            controls.append(gr.Dropdown(label="Auto-mask", choices=['None', 'Threshold', 'Edge', 'Grayscale'], value='None'))
            selected_model = gr.Dropdown(label="Auto-segment", choices=MODELS.keys(), value='None')
        with gr.Row():
            controls.append(gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Score', value=0.5, visible=False))
            controls.append(gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='IOU', value=0.5, visible=False))
            controls.append(gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='NMS', value=0.5, visible=False))
        with gr.Row():
            controls.append(gr.Dropdown(label="Preview", choices=['None', 'Masked', 'Binary', 'Grayscale', 'Color', 'Composite'], value='Composite'))
            controls.append(gr.Dropdown(label="Colormap", choices=COLORMAP, value='pink'))

        selected_model.change(fn=init_model, inputs=[selected_model], outputs=[selected_model])
        for control in controls:
            control.change(fn=update_opts, inputs=controls, outputs=[])
        return controls


def bind_controls(image_controls: List[gr.Image], preview_image: gr.Image, output_image: gr.Image):
    for image_control in image_controls:
        btn_mask.click(run_mask, inputs=[image_control], outputs=[preview_image])
        btn_lama.click(run_lama, inputs=[image_control], outputs=[output_image])
        image_control.edit(fn=run_mask_live, inputs=[image_control], outputs=[preview_image])
        for control in controls:
            control.change(fn=run_mask_live, inputs=[image_control], outputs=[preview_image])