Spaces:
Runtime error
Runtime error
File size: 12,737 Bytes
c19ca42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
import os
from concurrent.futures import ThreadPoolExecutor
from contextlib import contextmanager
from typing import Dict, Optional, Tuple, Set
import safetensors.torch
import torch
from tensordict import TensorDict
import modules.memstats
import modules.devices as devices
from modules.shared import log, console
from modules.sd_models import read_state_dict
from modules.merging import merge_methods
from modules.merging.merge_utils import WeightClass
from modules.merging.merge_rebasin import (
apply_permutation,
update_model_a,
weight_matching,
)
from modules.merging.merge_PermSpec import sdunet_permutation_spec
from modules.merging.merge_PermSpec_SDXL import sdxl_permutation_spec
##########################################################
# Files in modules.merging are heavily modified
# versions of sd-meh by @s1dxl used with his blessing
# orginal code can be found @ https://github.com/s1dlx/meh
##########################################################
MAX_TOKENS = 77
KEY_POSITION_IDS = ".".join(
[
"cond_stage_model",
"transformer",
"text_model",
"embeddings",
"position_ids",
]
)
def fix_clip(model: Dict) -> Dict:
if KEY_POSITION_IDS in model.keys():
model[KEY_POSITION_IDS] = torch.tensor(
[list(range(MAX_TOKENS))],
dtype=torch.int64,
device=model[KEY_POSITION_IDS].device,
)
return model
def prune_sd_model(model: Dict, keyset: Set) -> Dict:
keys = list(model.keys())
for k in keys:
if (
not k.startswith("model.diffusion_model.")
# and not k.startswith("first_stage_model.")
and not k.startswith("cond_stage_model.")
) or k not in keyset:
del model[k]
return model
def restore_sd_model(original_model: Dict, merged_model: Dict) -> Dict:
for k in original_model:
if k not in merged_model:
merged_model[k] = original_model[k]
return merged_model
def log_vram(txt=""):
log.debug(f"Merge {txt}: {modules.memstats.memory_stats()}")
def load_thetas(
models: Dict[str, os.PathLike],
prune: bool,
device: torch.device,
precision: str,
) -> Dict:
thetas = {k: TensorDict.from_dict(read_state_dict(m, "cpu")) for k, m in models.items()}
if prune:
keyset = set.intersection(*[set(m.keys()) for m in thetas.values() if len(m.keys())])
thetas = {k: prune_sd_model(m, keyset) for k, m in thetas.items()}
for model_key, model in thetas.items():
for key, block in model.items():
if precision == "fp16":
thetas[model_key].update({key: block.to(device).half()})
else:
thetas[model_key].update({key: block.to(device)})
log_vram("models loaded")
return thetas
def merge_models(
models: Dict[str, os.PathLike],
merge_mode: str,
precision: str = "fp16",
weights_clip: bool = False,
device: torch.device = None,
work_device: torch.device = None,
prune: bool = False,
threads: int = 4,
**kwargs,
) -> Dict:
thetas = load_thetas(models, prune, device, precision)
# log.info(f'Merge start: models={models.values()} precision={precision} clip={weights_clip} rebasin={re_basin} prune={prune} threads={threads}')
weight_matcher = WeightClass(thetas["model_a"], **kwargs)
if kwargs.get("re_basin", False):
merged = rebasin_merge(
thetas,
weight_matcher,
merge_mode,
precision=precision,
weights_clip=weights_clip,
iterations=kwargs.get("re_basin_iterations", 1),
device=device,
work_device=work_device,
threads=threads,
)
else:
merged = simple_merge(
thetas,
weight_matcher,
merge_mode,
precision=precision,
weights_clip=weights_clip,
device=device,
work_device=work_device,
threads=threads,
)
return un_prune_model(merged, thetas, models, device, prune, precision)
def un_prune_model(
merged: Dict,
thetas: Dict,
models: Dict,
device: torch.device,
prune: bool,
precision: str,
) -> Dict:
if prune:
log.info("Merge restoring pruned keys")
del thetas
devices.torch_gc(force=False)
original_a = TensorDict.from_dict(read_state_dict(models["model_a"], device))
unpruned = 0
for key in original_a.keys():
if KEY_POSITION_IDS in key:
continue
if "model" in key and key not in merged.keys():
merged.update({key: original_a[key]})
unpruned += 1
if precision == "fp16":
merged.update({key: merged[key].half()})
if unpruned > 248: # VAE has 248 keys, and we are purposely restoring it here
log.debug(f"Merge restored from primary model: keys={unpruned - 248}")
unpruned = 0
del original_a
original_b = TensorDict.from_dict(read_state_dict(models["model_b"], device))
for key in original_b.keys():
if KEY_POSITION_IDS in key:
continue
if "model" in key and key not in merged.keys():
merged.update({key: original_b[key]})
unpruned += 1
if precision == "fp16":
merged.update({key: merged[key].half()})
if unpruned != 0:
log.debug(f"Merge restored from secondary model: keys={unpruned}")
del original_b
devices.torch_gc(force=False)
return fix_clip(merged)
def simple_merge(
thetas: Dict[str, Dict],
weight_matcher: WeightClass,
merge_mode: str,
precision: str = "fp16",
weights_clip: bool = False,
device: torch.device = None,
work_device: torch.device = None,
threads: int = 4,
) -> Dict:
futures = []
# with tqdm(thetas["model_a"].keys(), desc="Merge") as progress:
import rich.progress as p
with p.Progress(p.TextColumn('[cyan]{task.description}'), p.BarColumn(), p.TaskProgressColumn(), p.TimeRemainingColumn(), p.TimeElapsedColumn(), p.TextColumn('[cyan]keys={task.fields[keys]}'), console=console) as progress:
task = progress.add_task(description="Merging", total=len(thetas["model_a"].keys()), keys=len(thetas["model_a"].keys()))
with ThreadPoolExecutor(max_workers=threads) as executor:
for key in thetas["model_a"].keys():
future = executor.submit(
simple_merge_key,
progress,
task,
key,
thetas,
weight_matcher,
merge_mode,
precision,
weights_clip,
device,
work_device,
)
futures.append(future)
for res in futures:
res.result()
if len(thetas["model_b"]) > 0:
log.debug(f'Merge update thetas: keys={len(thetas["model_b"])}')
for key in thetas["model_b"].keys():
if KEY_POSITION_IDS in key:
continue
if "model" in key and key not in thetas["model_a"].keys():
thetas["model_a"].update({key: thetas["model_b"][key]})
if precision == "fp16":
thetas["model_a"].update({key: thetas["model_a"][key].half()})
return fix_clip(thetas["model_a"])
def rebasin_merge(
thetas: Dict[str, os.PathLike],
weight_matcher: WeightClass,
merge_mode: str,
precision: str = "fp16",
weights_clip: bool = False,
iterations: int = 1,
device: torch.device = None,
work_device: torch.device = None,
threads: int = 1,
):
# not sure how this does when 3 models are involved...
model_a = thetas["model_a"].clone()
if weight_matcher.SDXL:
perm_spec = sdxl_permutation_spec()
else:
perm_spec = sdunet_permutation_spec()
for it in range(iterations):
log_vram(f"rebasin: iteration={it+1}")
weight_matcher.set_it(it)
# normal block merge we already know and love
thetas["model_a"] = simple_merge(
thetas,
weight_matcher,
merge_mode,
precision,
False,
device,
work_device,
threads,
)
# find permutations
perm_1, y = weight_matching(
perm_spec,
model_a,
thetas["model_a"],
max_iter=it,
init_perm=None,
usefp16=precision == "fp16",
device=device,
)
thetas["model_a"] = apply_permutation(perm_spec, perm_1, thetas["model_a"])
perm_2, z = weight_matching(
perm_spec,
thetas["model_b"],
thetas["model_a"],
max_iter=it,
init_perm=None,
usefp16=precision == "fp16",
device=device,
)
new_alpha = torch.nn.functional.normalize(
torch.sigmoid(torch.Tensor([y, z])), p=1, dim=0
).tolist()[0]
thetas["model_a"] = update_model_a(
perm_spec, perm_2, thetas["model_a"], new_alpha
)
if weights_clip:
clip_thetas = thetas.copy()
clip_thetas["model_a"] = model_a
thetas["model_a"] = clip_weights(thetas, thetas["model_a"])
return thetas["model_a"]
def simple_merge_key(progress, task, key, thetas, *args, **kwargs):
with merge_key_context(key, thetas, *args, **kwargs) as result:
if result is not None:
thetas["model_a"].update({key: result.detach().clone()})
progress.update(task, advance=1)
def merge_key( # pylint: disable=inconsistent-return-statements
key: str,
thetas: Dict,
weight_matcher: WeightClass,
merge_mode: str,
precision: str = "fp16",
weights_clip: bool = False,
device: torch.device = None,
work_device: torch.device = None,
) -> Optional[Tuple[str, Dict]]:
if work_device is None:
work_device = device
if KEY_POSITION_IDS in key:
return
for theta in thetas.values():
if key not in theta.keys():
return thetas["model_a"][key]
current_bases = weight_matcher(key)
try:
merge_method = getattr(merge_methods, merge_mode)
except AttributeError as e:
raise ValueError(f"{merge_mode} not implemented, aborting merge!") from e
merge_args = get_merge_method_args(current_bases, thetas, key, work_device)
# dealing with pix2pix and inpainting models
if (a_size := merge_args["a"].size()) != (b_size := merge_args["b"].size()):
if a_size[1] > b_size[1]:
merged_key = merge_args["a"]
else:
merged_key = merge_args["b"]
else:
merged_key = merge_method(**merge_args).to(device)
if weights_clip:
merged_key = clip_weights_key(thetas, merged_key, key)
if precision == "fp16":
merged_key = merged_key.half()
return merged_key
def clip_weights(thetas, merged):
for k in thetas["model_a"].keys():
if k in thetas["model_b"].keys():
merged.update({k: clip_weights_key(thetas, merged[k], k)})
return merged
def clip_weights_key(thetas, merged_weights, key):
t0 = thetas["model_a"][key]
t1 = thetas["model_b"][key]
maximums = torch.maximum(t0, t1)
minimums = torch.minimum(t0, t1)
return torch.minimum(torch.maximum(merged_weights, minimums), maximums)
@contextmanager
def merge_key_context(*args, **kwargs):
result = merge_key(*args, **kwargs)
try:
yield result
finally:
if result is not None:
del result
def get_merge_method_args(
current_bases: Dict,
thetas: Dict,
key: str,
work_device: torch.device,
) -> Dict:
merge_method_args = {
"a": thetas["model_a"][key].to(work_device),
"b": thetas["model_b"][key].to(work_device),
**current_bases,
}
if "model_c" in thetas:
merge_method_args["c"] = thetas["model_c"][key].to(work_device)
return merge_method_args
def save_model(model, output_file, file_format) -> None:
log.info(f"Merge saving: model='{output_file}'")
if file_format == "safetensors":
safetensors.torch.save_file(
model if type(model) == dict else model.to_dict(),
f"{output_file}.safetensors",
metadata={"format": "pt"},
)
else:
torch.save({"state_dict": model}, f"{output_file}.ckpt")
|