File size: 12,737 Bytes
c19ca42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
import os
from concurrent.futures import ThreadPoolExecutor
from contextlib import contextmanager
from typing import Dict, Optional, Tuple, Set
import safetensors.torch
import torch
from tensordict import TensorDict
import modules.memstats
import modules.devices as devices
from modules.shared import log, console
from modules.sd_models import read_state_dict
from modules.merging import merge_methods
from modules.merging.merge_utils import WeightClass
from modules.merging.merge_rebasin import (
    apply_permutation,
    update_model_a,
    weight_matching,
)
from modules.merging.merge_PermSpec import sdunet_permutation_spec
from modules.merging.merge_PermSpec_SDXL import sdxl_permutation_spec
##########################################################
# Files in modules.merging are heavily modified
# versions of sd-meh by @s1dxl used with his blessing
# orginal code can be found @ https://github.com/s1dlx/meh
##########################################################

MAX_TOKENS = 77


KEY_POSITION_IDS = ".".join(
    [
        "cond_stage_model",
        "transformer",
        "text_model",
        "embeddings",
        "position_ids",
    ]
)


def fix_clip(model: Dict) -> Dict:
    if KEY_POSITION_IDS in model.keys():
        model[KEY_POSITION_IDS] = torch.tensor(
            [list(range(MAX_TOKENS))],
            dtype=torch.int64,
            device=model[KEY_POSITION_IDS].device,
        )

    return model


def prune_sd_model(model: Dict, keyset: Set) -> Dict:
    keys = list(model.keys())
    for k in keys:
        if (
            not k.startswith("model.diffusion_model.")
            # and not k.startswith("first_stage_model.")
            and not k.startswith("cond_stage_model.")
        ) or k not in keyset:
            del model[k]
    return model


def restore_sd_model(original_model: Dict, merged_model: Dict) -> Dict:
    for k in original_model:
        if k not in merged_model:
            merged_model[k] = original_model[k]
    return merged_model


def log_vram(txt=""):
    log.debug(f"Merge {txt}: {modules.memstats.memory_stats()}")


def load_thetas(
    models: Dict[str, os.PathLike],
    prune: bool,
    device: torch.device,
    precision: str,
) -> Dict:
    thetas = {k: TensorDict.from_dict(read_state_dict(m, "cpu")) for k, m in models.items()}
    if prune:
        keyset = set.intersection(*[set(m.keys()) for m in thetas.values() if len(m.keys())])
        thetas = {k: prune_sd_model(m, keyset) for k, m in thetas.items()}

    for model_key, model in thetas.items():
        for key, block in model.items():
            if precision == "fp16":
                thetas[model_key].update({key: block.to(device).half()})
            else:
                thetas[model_key].update({key: block.to(device)})

    log_vram("models loaded")
    return thetas


def merge_models(
    models: Dict[str, os.PathLike],
    merge_mode: str,
    precision: str = "fp16",
    weights_clip: bool = False,
    device: torch.device = None,
    work_device: torch.device = None,
    prune: bool = False,
    threads: int = 4,
    **kwargs,
) -> Dict:
    thetas = load_thetas(models, prune, device, precision)
    # log.info(f'Merge start: models={models.values()} precision={precision} clip={weights_clip} rebasin={re_basin} prune={prune} threads={threads}')
    weight_matcher = WeightClass(thetas["model_a"], **kwargs)
    if kwargs.get("re_basin", False):
        merged = rebasin_merge(
            thetas,
            weight_matcher,
            merge_mode,
            precision=precision,
            weights_clip=weights_clip,
            iterations=kwargs.get("re_basin_iterations", 1),
            device=device,
            work_device=work_device,
            threads=threads,
        )
    else:
        merged = simple_merge(
            thetas,
            weight_matcher,
            merge_mode,
            precision=precision,
            weights_clip=weights_clip,
            device=device,
            work_device=work_device,
            threads=threads,
        )

    return un_prune_model(merged, thetas, models, device, prune, precision)


def un_prune_model(
    merged: Dict,
    thetas: Dict,
    models: Dict,
    device: torch.device,
    prune: bool,
    precision: str,
) -> Dict:
    if prune:
        log.info("Merge restoring pruned keys")
        del thetas
        devices.torch_gc(force=False)
        original_a = TensorDict.from_dict(read_state_dict(models["model_a"], device))
        unpruned = 0
        for key in original_a.keys():
            if KEY_POSITION_IDS in key:
                continue
            if "model" in key and key not in merged.keys():
                merged.update({key: original_a[key]})
                unpruned += 1
                if precision == "fp16":
                    merged.update({key: merged[key].half()})
        if unpruned > 248:  # VAE has 248 keys, and we are purposely restoring it here
            log.debug(f"Merge restored from primary model: keys={unpruned - 248}")
        unpruned = 0
        del original_a
        original_b = TensorDict.from_dict(read_state_dict(models["model_b"], device))
        for key in original_b.keys():
            if KEY_POSITION_IDS in key:
                continue
            if "model" in key and key not in merged.keys():
                merged.update({key: original_b[key]})
                unpruned += 1
                if precision == "fp16":
                    merged.update({key: merged[key].half()})
        if unpruned != 0:
            log.debug(f"Merge restored from secondary model: keys={unpruned}")
        del original_b
        devices.torch_gc(force=False)

    return fix_clip(merged)


def simple_merge(
    thetas: Dict[str, Dict],
    weight_matcher: WeightClass,
    merge_mode: str,
    precision: str = "fp16",
    weights_clip: bool = False,
    device: torch.device = None,
    work_device: torch.device = None,
    threads: int = 4,
) -> Dict:
    futures = []
    # with tqdm(thetas["model_a"].keys(), desc="Merge") as progress:
    import rich.progress as p
    with p.Progress(p.TextColumn('[cyan]{task.description}'), p.BarColumn(), p.TaskProgressColumn(), p.TimeRemainingColumn(), p.TimeElapsedColumn(), p.TextColumn('[cyan]keys={task.fields[keys]}'), console=console) as progress:
        task = progress.add_task(description="Merging", total=len(thetas["model_a"].keys()), keys=len(thetas["model_a"].keys()))
        with ThreadPoolExecutor(max_workers=threads) as executor:
            for key in thetas["model_a"].keys():
                future = executor.submit(
                    simple_merge_key,
                    progress,
                    task,
                    key,
                    thetas,
                    weight_matcher,
                    merge_mode,
                    precision,
                    weights_clip,
                    device,
                    work_device,
                )
                futures.append(future)

        for res in futures:
            res.result()

    if len(thetas["model_b"]) > 0:
        log.debug(f'Merge update thetas: keys={len(thetas["model_b"])}')
        for key in thetas["model_b"].keys():
            if KEY_POSITION_IDS in key:
                continue
            if "model" in key and key not in thetas["model_a"].keys():
                thetas["model_a"].update({key: thetas["model_b"][key]})
                if precision == "fp16":
                    thetas["model_a"].update({key: thetas["model_a"][key].half()})

    return fix_clip(thetas["model_a"])


def rebasin_merge(
    thetas: Dict[str, os.PathLike],
    weight_matcher: WeightClass,
    merge_mode: str,
    precision: str = "fp16",
    weights_clip: bool = False,
    iterations: int = 1,
    device: torch.device = None,
    work_device: torch.device = None,
    threads: int = 1,
):
    # not sure how this does when 3 models are involved...
    model_a = thetas["model_a"].clone()
    if weight_matcher.SDXL:
        perm_spec = sdxl_permutation_spec()
    else:
        perm_spec = sdunet_permutation_spec()

    for it in range(iterations):
        log_vram(f"rebasin: iteration={it+1}")
        weight_matcher.set_it(it)

        # normal block merge we already know and love
        thetas["model_a"] = simple_merge(
            thetas,
            weight_matcher,
            merge_mode,
            precision,
            False,
            device,
            work_device,
            threads,
        )

        # find permutations
        perm_1, y = weight_matching(
            perm_spec,
            model_a,
            thetas["model_a"],
            max_iter=it,
            init_perm=None,
            usefp16=precision == "fp16",
            device=device,
        )
        thetas["model_a"] = apply_permutation(perm_spec, perm_1, thetas["model_a"])

        perm_2, z = weight_matching(
            perm_spec,
            thetas["model_b"],
            thetas["model_a"],
            max_iter=it,
            init_perm=None,
            usefp16=precision == "fp16",
            device=device,
        )

        new_alpha = torch.nn.functional.normalize(
            torch.sigmoid(torch.Tensor([y, z])), p=1, dim=0
        ).tolist()[0]
        thetas["model_a"] = update_model_a(
            perm_spec, perm_2, thetas["model_a"], new_alpha
        )

    if weights_clip:
        clip_thetas = thetas.copy()
        clip_thetas["model_a"] = model_a
        thetas["model_a"] = clip_weights(thetas, thetas["model_a"])

    return thetas["model_a"]


def simple_merge_key(progress, task, key, thetas, *args, **kwargs):
    with merge_key_context(key, thetas, *args, **kwargs) as result:
        if result is not None:
            thetas["model_a"].update({key: result.detach().clone()})
    progress.update(task, advance=1)


def merge_key(  # pylint: disable=inconsistent-return-statements
    key: str,
    thetas: Dict,
    weight_matcher: WeightClass,
    merge_mode: str,
    precision: str = "fp16",
    weights_clip: bool = False,
    device: torch.device = None,
    work_device: torch.device = None,
) -> Optional[Tuple[str, Dict]]:
    if work_device is None:
        work_device = device

    if KEY_POSITION_IDS in key:
        return

    for theta in thetas.values():
        if key not in theta.keys():
            return thetas["model_a"][key]

        current_bases = weight_matcher(key)
        try:
            merge_method = getattr(merge_methods, merge_mode)
        except AttributeError as e:
            raise ValueError(f"{merge_mode} not implemented, aborting merge!") from e

        merge_args = get_merge_method_args(current_bases, thetas, key, work_device)

        # dealing with pix2pix and inpainting models
        if (a_size := merge_args["a"].size()) != (b_size := merge_args["b"].size()):
            if a_size[1] > b_size[1]:
                merged_key = merge_args["a"]
            else:
                merged_key = merge_args["b"]
        else:
            merged_key = merge_method(**merge_args).to(device)

        if weights_clip:
            merged_key = clip_weights_key(thetas, merged_key, key)

        if precision == "fp16":
            merged_key = merged_key.half()

        return merged_key


def clip_weights(thetas, merged):
    for k in thetas["model_a"].keys():
        if k in thetas["model_b"].keys():
            merged.update({k: clip_weights_key(thetas, merged[k], k)})
    return merged


def clip_weights_key(thetas, merged_weights, key):
    t0 = thetas["model_a"][key]
    t1 = thetas["model_b"][key]
    maximums = torch.maximum(t0, t1)
    minimums = torch.minimum(t0, t1)
    return torch.minimum(torch.maximum(merged_weights, minimums), maximums)


@contextmanager
def merge_key_context(*args, **kwargs):
    result = merge_key(*args, **kwargs)
    try:
        yield result
    finally:
        if result is not None:
            del result


def get_merge_method_args(
    current_bases: Dict,
    thetas: Dict,
    key: str,
    work_device: torch.device,
) -> Dict:
    merge_method_args = {
        "a": thetas["model_a"][key].to(work_device),
        "b": thetas["model_b"][key].to(work_device),
        **current_bases,
    }

    if "model_c" in thetas:
        merge_method_args["c"] = thetas["model_c"][key].to(work_device)

    return merge_method_args


def save_model(model, output_file, file_format) -> None:
    log.info(f"Merge saving: model='{output_file}'")
    if file_format == "safetensors":
        safetensors.torch.save_file(
            model if type(model) == dict else model.to_dict(),
            f"{output_file}.safetensors",
            metadata={"format": "pt"},
        )
    else:
        torch.save({"state_dict": model}, f"{output_file}.ckpt")