Spaces:
Runtime error
Runtime error
File size: 39,081 Bytes
c19ca42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 |
# pylint: disable=unused-argument
import re
import csv
import random
from collections import namedtuple
from copy import copy
from itertools import permutations, chain
from io import StringIO
from PIL import Image
import numpy as np
import gradio as gr
from modules import shared, errors, scripts, images, sd_samplers, processing, sd_models, sd_vae, ipadapter
from modules.ui_components import ToolButton
import modules.ui_symbols as symbols
def apply_field(field):
def fun(p, x, xs):
setattr(p, field, x)
return fun
def apply_setting(field):
def fun(p, x, xs):
shared.opts.data[field] = x
return fun
def apply_prompt(p, x, xs):
if xs[0] not in p.prompt and xs[0] not in p.negative_prompt:
shared.log.warning(f"XYZ grid: prompt S/R did not find {xs[0]} in prompt or negative prompt.")
else:
p.prompt = p.prompt.replace(xs[0], x)
p.negative_prompt = p.negative_prompt.replace(xs[0], x)
def apply_order(p, x, xs):
token_order = []
for token in x:
token_order.append((p.prompt.find(token), token))
token_order.sort(key=lambda t: t[0])
prompt_parts = []
for _, token in token_order:
n = p.prompt.find(token)
prompt_parts.append(p.prompt[0:n])
p.prompt = p.prompt[n + len(token):]
prompt_tmp = ""
for idx, part in enumerate(prompt_parts):
prompt_tmp += part
prompt_tmp += x[idx]
p.prompt = prompt_tmp + p.prompt
def apply_sampler(p, x, xs):
sampler_name = sd_samplers.samplers_map.get(x.lower(), None)
if sampler_name is None:
shared.log.warning(f"XYZ grid: unknown sampler: {x}")
else:
p.sampler_name = sampler_name
def apply_hr_sampler_name(p, x, xs):
hr_sampler_name = sd_samplers.samplers_map.get(x.lower(), None)
if hr_sampler_name is None:
shared.log.warning(f"XYZ grid: unknown sampler: {x}")
else:
p.hr_sampler_name = hr_sampler_name
def confirm_samplers(p, xs):
for x in xs:
if x.lower() not in sd_samplers.samplers_map:
shared.log.warning(f"XYZ grid: unknown sampler: {x}")
def apply_checkpoint(p, x, xs):
if x == shared.opts.sd_model_checkpoint:
return
info = sd_models.get_closet_checkpoint_match(x)
if info is None:
shared.log.warning(f"XYZ grid: apply checkpoint unknown checkpoint: {x}")
else:
sd_models.reload_model_weights(shared.sd_model, info)
p.override_settings['sd_model_checkpoint'] = info.name
def apply_refiner(p, x, xs):
if x == shared.opts.sd_model_refiner:
return
if x == 'None':
return
info = sd_models.get_closet_checkpoint_match(x)
if info is None:
shared.log.warning(f"XYZ grid: apply refiner unknown checkpoint: {x}")
else:
sd_models.reload_model_weights(shared.sd_refiner, info)
p.override_settings['sd_model_refiner'] = info.name
def apply_dict(p, x, xs):
if x == shared.opts.sd_model_dict:
return
info_dict = sd_models.get_closet_checkpoint_match(x)
info_ckpt = sd_models.get_closet_checkpoint_match(shared.opts.sd_model_checkpoint)
if info_dict is None or info_ckpt is None:
shared.log.warning(f"XYZ grid: apply dict unknown checkpoint: {x}")
else:
shared.opts.sd_model_dict = info_dict.name # this will trigger reload_model_weights via onchange handler
p.override_settings['sd_model_checkpoint'] = info_ckpt.name
p.override_settings['sd_model_dict'] = info_dict.name
def apply_clip_skip(p, x, xs):
p.clip_skip = x
shared.opts.data["clip_skip"] = x
def find_vae(name: str):
if name.lower() in ['auto', 'automatic']:
return sd_vae.unspecified
if name.lower() == 'none':
return None
else:
choices = [x for x in sorted(sd_vae.vae_dict, key=lambda x: len(x)) if name.lower().strip() in x.lower()]
if len(choices) == 0:
shared.log.warning(f"No VAE found for {name}; using automatic")
return sd_vae.unspecified
else:
return sd_vae.vae_dict[choices[0]]
def apply_vae(p, x, xs):
sd_vae.reload_vae_weights(shared.sd_model, vae_file=find_vae(x))
def apply_styles(p: processing.StableDiffusionProcessingTxt2Img, x: str, _):
p.styles.extend(x.split(','))
def apply_upscaler(p: processing.StableDiffusionProcessingTxt2Img, opt, x):
p.enable_hr = True
p.hr_force = True
p.denoising_strength = 0.0
p.hr_upscaler = opt
def apply_face_restore(p, opt, x):
opt = opt.lower()
if opt == 'codeformer':
is_active = True
p.face_restoration_model = 'CodeFormer'
elif opt == 'gfpgan':
is_active = True
p.face_restoration_model = 'GFPGAN'
else:
is_active = opt in ('true', 'yes', 'y', '1')
p.restore_faces = is_active
def apply_override(field):
def fun(p, x, xs):
p.override_settings[field] = x
return fun
def format_value_add_label(p, opt, x):
if type(x) == float:
x = round(x, 8)
return f"{opt.label}: {x}"
def format_value(p, opt, x):
if type(x) == float:
x = round(x, 8)
return x
def format_value_join_list(p, opt, x):
return ", ".join(x)
def do_nothing(p, x, xs):
pass
def format_nothing(p, opt, x):
return ""
def str_permutations(x):
"""dummy function for specifying it in AxisOption's type when you want to get a list of permutations"""
return x
def list_to_csv_string(data_list):
with StringIO() as o:
csv.writer(o).writerow(data_list)
return o.getvalue().strip()
class AxisOption:
def __init__(self, label, tipe, apply, fmt=format_value_add_label, confirm=None, cost=0.0, choices=None):
self.label = label
self.type = tipe
self.apply = apply
self.format_value = fmt
self.confirm = confirm
self.cost = cost
self.choices = choices
class AxisOptionImg2Img(AxisOption):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.is_img2img = True
class AxisOptionTxt2Img(AxisOption):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.is_img2img = False
axis_options = [
AxisOption("Nothing", str, do_nothing, fmt=format_nothing),
AxisOption("Prompt S/R", str, apply_prompt, fmt=format_value),
AxisOption("Model", str, apply_checkpoint, fmt=format_value, cost=1.0, choices=lambda: sorted(sd_models.checkpoints_list)),
AxisOption("VAE", str, apply_vae, cost=0.7, choices=lambda: ['None'] + list(sd_vae.vae_dict)),
AxisOption("Styles", str, apply_styles, choices=lambda: [s.name for s in shared.prompt_styles.styles.values()]),
AxisOptionTxt2Img("Sampler", str, apply_sampler, fmt=format_value, confirm=confirm_samplers, choices=lambda: [x.name for x in sd_samplers.samplers]),
AxisOptionImg2Img("Sampler", str, apply_sampler, fmt=format_value, confirm=confirm_samplers, choices=lambda: [x.name for x in sd_samplers.samplers_for_img2img]),
AxisOption("Seed", int, apply_field("seed")),
AxisOption("Steps", int, apply_field("steps")),
AxisOption("CFG Scale", float, apply_field("cfg_scale")),
AxisOption("CFG End", float, apply_field("cfg_end")),
AxisOption("Variation seed", int, apply_field("subseed")),
AxisOption("Variation strength", float, apply_field("subseed_strength")),
AxisOption("Clip skip", float, apply_clip_skip),
AxisOption("Denoising strength", float, apply_field("denoising_strength")),
AxisOption("Prompt order", str_permutations, apply_order, fmt=format_value_join_list),
AxisOption("Model dictionary", str, apply_dict, fmt=format_value, cost=1.0, choices=lambda: ['None'] + list(sd_models.checkpoints_list)),
AxisOptionImg2Img("Image mask weight", float, apply_field("inpainting_mask_weight")),
AxisOption("[Postprocess] Upscaler", str, apply_upscaler, choices=lambda: [x.name for x in shared.sd_upscalers][1:]),
AxisOption("[Postprocess] Face restore", str, apply_face_restore, fmt=format_value),
AxisOption("[Sampler] Sigma min", float, apply_field("s_min")),
AxisOption("[Sampler] Sigma max", float, apply_field("s_max")),
AxisOption("[Sampler] Sigma tmin", float, apply_field("s_tmin")),
AxisOption("[Sampler] Sigma tmax", float, apply_field("s_tmax")),
AxisOption("[Sampler] Sigma Churn", float, apply_field("s_churn")),
AxisOption("[Sampler] Sigma noise", float, apply_field("s_noise")),
AxisOption("[Sampler] ETA", float, apply_setting("scheduler_eta")),
AxisOption("[Sampler] Solver order", int, apply_setting("schedulers_solver_order")),
AxisOption("[Second pass] Upscaler", str, apply_field("hr_upscaler"), choices=lambda: [*shared.latent_upscale_modes, *[x.name for x in shared.sd_upscalers]]),
AxisOption("[Second pass] Sampler", str, apply_hr_sampler_name, fmt=format_value, confirm=confirm_samplers, choices=lambda: [x.name for x in sd_samplers.samplers]),
AxisOption("[Second pass] Denoising Strength", float, apply_field("denoising_strength")),
AxisOption("[Second pass] Hires steps", int, apply_field("hr_second_pass_steps")),
AxisOption("[Second pass] CFG scale", float, apply_field("image_cfg_scale")),
AxisOption("[Second pass] Guidance rescale", float, apply_field("diffusers_guidance_rescale")),
AxisOption("[Refiner] Model", str, apply_refiner, fmt=format_value, cost=1.0, choices=lambda: ['None'] + sorted(sd_models.checkpoints_list)),
AxisOption("[Refiner] Refiner start", float, apply_field("refiner_start")),
AxisOption("[Refiner] Refiner steps", float, apply_field("refiner_steps")),
AxisOption("[HDR] Mode", int, apply_field("hdr_mode")),
AxisOption("[HDR] Brightness", float, apply_field("hdr_brightness")),
AxisOption("[HDR] Color", float, apply_field("hdr_color")),
AxisOption("[HDR] Sharpen", float, apply_field("hdr_sharpen")),
AxisOption("[HDR] Clamp boundary", float, apply_field("hdr_boundary")),
AxisOption("[HDR] Clamp threshold", float, apply_field("hdr_threshold")),
AxisOption("[HDR] Maximize center shift", float, apply_field("hdr_max_center")),
AxisOption("[HDR] Maximize boundary", float, apply_field("hdr_max_boundry")),
AxisOption("[HDR] Tint Color Hex", str, apply_field("hdr_color_picker")),
AxisOption("[HDR] Tint Ratio", float, apply_field("hdr_tint_ratio")),
AxisOption("[ToMe] Token merging ratio (txt2img)", float, apply_override('token_merging_ratio')),
AxisOption("[ToMe] Token merging ratio (hires)", float, apply_override('token_merging_ratio_hr')),
AxisOption("[FreeU] 1st stage backbone factor", float, apply_setting('freeu_b1')),
AxisOption("[FreeU] 2nd stage backbone factor", float, apply_setting('freeu_b2')),
AxisOption("[FreeU] 1st stage skip factor", float, apply_setting('freeu_s1')),
AxisOption("[FreeU] 2nd stage skip factor", float, apply_setting('freeu_s2')),
AxisOption("[IP adapter] Name", str, apply_field('ip_adapter_names'), cost=1.0, choices=lambda: list(ipadapter.ADAPTERS)),
AxisOption("[IP adapter] Scale", float, apply_field('ip_adapter_scales')),
AxisOption("[IP adapter] Starts", float, apply_field('ip_adapter_starts')),
AxisOption("[IP adapter] Ends", float, apply_field('ip_adapter_ends')),
]
def draw_xyz_grid(p, xs, ys, zs, x_labels, y_labels, z_labels, cell, draw_legend, include_lone_images, include_sub_grids, first_axes_processed, second_axes_processed, margin_size, no_grid):
hor_texts = [[images.GridAnnotation(x)] for x in x_labels]
ver_texts = [[images.GridAnnotation(y)] for y in y_labels]
title_texts = [[images.GridAnnotation(z)] for z in z_labels]
list_size = (len(xs) * len(ys) * len(zs))
processed_result = None
shared.state.job_count = list_size * p.n_iter
def process_cell(x, y, z, ix, iy, iz):
nonlocal processed_result
def index(ix, iy, iz):
return ix + iy * len(xs) + iz * len(xs) * len(ys)
shared.state.job = 'grid'
processed: processing.Processed = cell(x, y, z, ix, iy, iz)
if processed_result is None:
processed_result = copy(processed)
if processed_result is None:
shared.log.error('XYZ grid: no processing results')
return processing.Processed(p, [])
processed_result.images = [None] * list_size
processed_result.all_prompts = [None] * list_size
processed_result.all_seeds = [None] * list_size
processed_result.infotexts = [None] * list_size
processed_result.index_of_first_image = 1
idx = index(ix, iy, iz)
if processed is not None and processed.images:
processed_result.images[idx] = processed.images[0]
processed_result.all_prompts[idx] = processed.prompt
processed_result.all_seeds[idx] = processed.seed
processed_result.infotexts[idx] = processed.infotexts[0]
else:
cell_mode = "P"
cell_size = (processed_result.width, processed_result.height)
if processed_result.images[0] is not None:
cell_mode = processed_result.images[0].mode
cell_size = processed_result.images[0].size
processed_result.images[idx] = Image.new(cell_mode, cell_size)
if first_axes_processed == 'x':
for ix, x in enumerate(xs):
if second_axes_processed == 'y':
for iy, y in enumerate(ys):
for iz, z in enumerate(zs):
process_cell(x, y, z, ix, iy, iz)
else:
for iz, z in enumerate(zs):
for iy, y in enumerate(ys):
process_cell(x, y, z, ix, iy, iz)
elif first_axes_processed == 'y':
for iy, y in enumerate(ys):
if second_axes_processed == 'x':
for ix, x in enumerate(xs):
for iz, z in enumerate(zs):
process_cell(x, y, z, ix, iy, iz)
else:
for iz, z in enumerate(zs):
for ix, x in enumerate(xs):
process_cell(x, y, z, ix, iy, iz)
elif first_axes_processed == 'z':
for iz, z in enumerate(zs):
if second_axes_processed == 'x':
for ix, x in enumerate(xs):
for iy, y in enumerate(ys):
process_cell(x, y, z, ix, iy, iz)
else:
for iy, y in enumerate(ys):
for ix, x in enumerate(xs):
process_cell(x, y, z, ix, iy, iz)
if not processed_result:
shared.log.error("XYZ grid: Failed to initialize processing")
return processing.Processed(p, [])
elif not any(processed_result.images):
shared.log.error("XYZ grid: Failed to return processed image")
return processing.Processed(p, [])
z_count = len(zs)
for i in range(z_count):
start_index = (i * len(xs) * len(ys)) + i
end_index = start_index + len(xs) * len(ys)
if (not no_grid or include_sub_grids) and images.check_grid_size(processed_result.images[start_index:end_index]):
grid = images.image_grid(processed_result.images[start_index:end_index], rows=len(ys))
if draw_legend:
grid = images.draw_grid_annotations(grid, processed_result.images[start_index].size[0], processed_result.images[start_index].size[1], hor_texts, ver_texts, margin_size, title=title_texts[i])
processed_result.images.insert(i, grid)
processed_result.all_prompts.insert(i, processed_result.all_prompts[start_index])
processed_result.all_seeds.insert(i, processed_result.all_seeds[start_index])
processed_result.infotexts.insert(i, processed_result.infotexts[start_index])
sub_grid_size = processed_result.images[0].size
if not no_grid and images.check_grid_size(processed_result.images[:z_count]):
z_grid = images.image_grid(processed_result.images[:z_count], rows=1)
if draw_legend:
z_grid = images.draw_grid_annotations(z_grid, sub_grid_size[0], sub_grid_size[1], [[images.GridAnnotation()] for _ in z_labels], [[images.GridAnnotation()]])
processed_result.images.insert(0, z_grid)
#processed_result.all_prompts.insert(0, processed_result.all_prompts[0])
#processed_result.all_seeds.insert(0, processed_result.all_seeds[0])
processed_result.infotexts.insert(0, processed_result.infotexts[0])
return processed_result
class SharedSettingsStackHelper(object):
vae = None
schedulers_solver_order = None
token_merging_ratio_hr = None
token_merging_ratio = None
sd_model_checkpoint = None
sd_model_dict = None
sd_vae_checkpoint = None
def __enter__(self):
#Save overridden settings so they can be restored later.
self.vae = shared.opts.sd_vae
self.schedulers_solver_order = shared.opts.schedulers_solver_order
self.token_merging_ratio_hr = shared.opts.token_merging_ratio_hr
self.token_merging_ratio = shared.opts.token_merging_ratio
self.sd_model_checkpoint = shared.opts.sd_model_checkpoint
self.sd_model_dict = shared.opts.sd_model_dict
self.sd_vae_checkpoint = shared.opts.sd_vae
def __exit__(self, exc_type, exc_value, tb):
#Restore overriden settings after plot generation.
shared.opts.data["sd_vae"] = self.vae
shared.opts.data["schedulers_solver_order"] = self.schedulers_solver_order
shared.opts.data["token_merging_ratio_hr"] = self.token_merging_ratio_hr
shared.opts.data["token_merging_ratio"] = self.token_merging_ratio
if self.sd_model_dict != shared.opts.sd_model_dict:
shared.opts.data["sd_model_dict"] = self.sd_model_dict
if self.sd_model_checkpoint != shared.opts.sd_model_checkpoint:
shared.opts.data["sd_model_checkpoint"] = self.sd_model_checkpoint
sd_models.reload_model_weights()
if self.sd_vae_checkpoint != shared.opts.sd_vae:
shared.opts.data["sd_vae"] = self.sd_vae_checkpoint
sd_vae.reload_vae_weights()
re_range = re.compile(r'([-+]?[0-9]*\.?[0-9]+)-([-+]?[0-9]*\.?[0-9]+):?([0-9]+)?')
class Script(scripts.Script):
current_axis_options = []
def title(self):
return "X/Y/Z Grid"
def ui(self, is_img2img):
self.current_axis_options = [x for x in axis_options if type(x) == AxisOption or x.is_img2img == is_img2img]
with gr.Row():
gr.HTML('<span">  X/Y/Z Grid</span><br>')
with gr.Row():
with gr.Column():
with gr.Row(variant='compact'):
x_type = gr.Dropdown(label="X type", container=True, choices=[x.label for x in self.current_axis_options], value=self.current_axis_options[0].label, type="index", elem_id=self.elem_id("x_type"))
x_values = gr.Textbox(label="X values", container=True, lines=1, elem_id=self.elem_id("x_values"))
x_values_dropdown = gr.Dropdown(label="X values", container=True, visible=False, multiselect=True, interactive=True)
fill_x_button = ToolButton(value=symbols.fill, elem_id="xyz_grid_fill_x_tool_button", visible=False)
with gr.Row(variant='compact'):
y_type = gr.Dropdown(label="Y type", container=True, choices=[x.label for x in self.current_axis_options], value=self.current_axis_options[0].label, type="index", elem_id=self.elem_id("y_type"))
y_values = gr.Textbox(label="Y values", container=True, lines=1, elem_id=self.elem_id("y_values"))
y_values_dropdown = gr.Dropdown(label="Y values", container=True, visible=False, multiselect=True, interactive=True)
fill_y_button = ToolButton(value=symbols.fill, elem_id="xyz_grid_fill_y_tool_button", visible=False)
with gr.Row(variant='compact'):
z_type = gr.Dropdown(label="Z type", container=True, choices=[x.label for x in self.current_axis_options], value=self.current_axis_options[0].label, type="index", elem_id=self.elem_id("z_type"))
z_values = gr.Textbox(label="Z values", container=True, lines=1, elem_id=self.elem_id("z_values"))
z_values_dropdown = gr.Dropdown(label="Z values", container=True, visible=False, multiselect=True, interactive=True)
fill_z_button = ToolButton(value=symbols.fill, elem_id="xyz_grid_fill_z_tool_button", visible=False)
with gr.Row():
with gr.Column():
csv_mode = gr.Checkbox(label='Text inputs', value=False, elem_id=self.elem_id("csv_mode"), container=False)
draw_legend = gr.Checkbox(label='Legend', value=True, elem_id=self.elem_id("draw_legend"), container=False)
no_fixed_seeds = gr.Checkbox(label='Random seeds', value=False, elem_id=self.elem_id("no_fixed_seeds"), container=False)
with gr.Column():
no_grid = gr.Checkbox(label='Skip grid', value=False, elem_id=self.elem_id("no_xyz_grid"), container=False)
include_lone_images = gr.Checkbox(label='Sub-images', value=False, elem_id=self.elem_id("include_lone_images"), container=False)
include_sub_grids = gr.Checkbox(label='Sub-grids', value=False, elem_id=self.elem_id("include_sub_grids"), container=False)
with gr.Row():
margin_size = gr.Slider(label="Grid margins", minimum=0, maximum=500, value=0, step=2, elem_id=self.elem_id("margin_size"))
with gr.Row():
swap_xy_axes_button = gr.Button(value="Swap X/Y", elem_id="xy_grid_swap_axes_button", variant="secondary")
swap_yz_axes_button = gr.Button(value="Swap Y/Z", elem_id="yz_grid_swap_axes_button", variant="secondary")
swap_xz_axes_button = gr.Button(value="Swap X/Z", elem_id="xz_grid_swap_axes_button", variant="secondary")
def swap_axes(axis1_type, axis1_values, axis1_values_dropdown, axis2_type, axis2_values, axis2_values_dropdown):
return self.current_axis_options[axis2_type].label, axis2_values, axis2_values_dropdown, self.current_axis_options[axis1_type].label, axis1_values, axis1_values_dropdown
xy_swap_args = [x_type, x_values, x_values_dropdown, y_type, y_values, y_values_dropdown]
swap_xy_axes_button.click(swap_axes, inputs=xy_swap_args, outputs=xy_swap_args)
yz_swap_args = [y_type, y_values, y_values_dropdown, z_type, z_values, z_values_dropdown]
swap_yz_axes_button.click(swap_axes, inputs=yz_swap_args, outputs=yz_swap_args)
xz_swap_args = [x_type, x_values, x_values_dropdown, z_type, z_values, z_values_dropdown]
swap_xz_axes_button.click(swap_axes, inputs=xz_swap_args, outputs=xz_swap_args)
def fill(axis_type, csv_mode):
axis = self.current_axis_options[axis_type]
if axis.choices:
if csv_mode:
return list_to_csv_string(axis.choices()), gr.update()
else:
return gr.update(), axis.choices()
else:
return gr.update(), gr.update()
fill_x_button.click(fn=fill, inputs=[x_type, csv_mode], outputs=[x_values, x_values_dropdown])
fill_y_button.click(fn=fill, inputs=[y_type, csv_mode], outputs=[y_values, y_values_dropdown])
fill_z_button.click(fn=fill, inputs=[z_type, csv_mode], outputs=[z_values, z_values_dropdown])
def select_axis(axis_type, axis_values, axis_values_dropdown, csv_mode):
choices = self.current_axis_options[axis_type].choices
has_choices = choices is not None
current_values = axis_values
current_dropdown_values = axis_values_dropdown
if has_choices:
choices = choices()
if csv_mode:
current_dropdown_values = list(filter(lambda x: x in choices, current_dropdown_values))
current_values = list_to_csv_string(current_dropdown_values)
else:
current_dropdown_values = [x.strip() for x in chain.from_iterable(csv.reader(StringIO(axis_values)))]
current_dropdown_values = list(filter(lambda x: x in choices, current_dropdown_values))
return (gr.Button.update(visible=has_choices), gr.Textbox.update(visible=not has_choices or csv_mode, value=current_values),
gr.update(choices=choices if has_choices else None, visible=has_choices and not csv_mode, value=current_dropdown_values))
x_type.change(fn=select_axis, inputs=[x_type, x_values, x_values_dropdown, csv_mode], outputs=[fill_x_button, x_values, x_values_dropdown])
y_type.change(fn=select_axis, inputs=[y_type, y_values, y_values_dropdown, csv_mode], outputs=[fill_y_button, y_values, y_values_dropdown])
z_type.change(fn=select_axis, inputs=[z_type, z_values, z_values_dropdown, csv_mode], outputs=[fill_z_button, z_values, z_values_dropdown])
def change_choice_mode(csv_mode, x_type, x_values, x_values_dropdown, y_type, y_values, y_values_dropdown, z_type, z_values, z_values_dropdown):
_fill_x_button, _x_values, _x_values_dropdown = select_axis(x_type, x_values, x_values_dropdown, csv_mode)
_fill_y_button, _y_values, _y_values_dropdown = select_axis(y_type, y_values, y_values_dropdown, csv_mode)
_fill_z_button, _z_values, _z_values_dropdown = select_axis(z_type, z_values, z_values_dropdown, csv_mode)
return _fill_x_button, _x_values, _x_values_dropdown, _fill_y_button, _y_values, _y_values_dropdown, _fill_z_button, _z_values, _z_values_dropdown
csv_mode.change(fn=change_choice_mode, inputs=[csv_mode, x_type, x_values, x_values_dropdown, y_type, y_values, y_values_dropdown, z_type, z_values, z_values_dropdown], outputs=[fill_x_button, x_values, x_values_dropdown, fill_y_button, y_values, y_values_dropdown, fill_z_button, z_values, z_values_dropdown])
def get_dropdown_update_from_params(axis,params):
val_key = f"{axis} Values"
vals = params.get(val_key,"")
valslist = [x.strip() for x in chain.from_iterable(csv.reader(StringIO(vals))) if x]
return gr.update(value = valslist)
self.infotext_fields = (
(x_type, "X Type"),
(x_values, "X Values"),
(x_values_dropdown, lambda params:get_dropdown_update_from_params("X",params)),
(y_type, "Y Type"),
(y_values, "Y Values"),
(y_values_dropdown, lambda params:get_dropdown_update_from_params("Y",params)),
(z_type, "Z Type"),
(z_values, "Z Values"),
(z_values_dropdown, lambda params:get_dropdown_update_from_params("Z",params)),
)
return [x_type, x_values, x_values_dropdown, y_type, y_values, y_values_dropdown, z_type, z_values, z_values_dropdown, csv_mode, draw_legend, no_fixed_seeds, no_grid, include_lone_images, include_sub_grids, margin_size]
def run(self, p, x_type, x_values, x_values_dropdown, y_type, y_values, y_values_dropdown, z_type, z_values, z_values_dropdown, csv_mode, draw_legend, no_fixed_seeds, no_grid, include_lone_images, include_sub_grids, margin_size): # pylint: disable=W0221
shared.log.debug(f'xyzgrid: x_type={x_type}|x_values={x_values}|x_values_dropdown={x_values_dropdown}|y_type={y_type}|{y_values}={y_values}|{y_values_dropdown}={y_values_dropdown}|z_type={z_type}|z_values={z_values}|z_values_dropdown={z_values_dropdown}|draw_legend={draw_legend}|include_lone_images={include_lone_images}|include_sub_grids={include_sub_grids}|no_grid={no_grid}|margin_size={margin_size}')
if not no_fixed_seeds:
processing.fix_seed(p)
if not shared.opts.return_grid:
p.batch_size = 1
def process_axis(opt, vals, vals_dropdown):
if opt.label == 'Nothing':
return [0]
if opt.choices is not None and not csv_mode:
valslist = vals_dropdown
else:
valslist = [x.strip() for x in chain.from_iterable(csv.reader(StringIO(vals))) if x]
if opt.type == int:
valslist_ext = []
for val in valslist:
m = re_range.fullmatch(val)
if m is not None:
start_val = int(m.group(1)) if m.group(1) is not None else val
end_val = int(m.group(2)) if m.group(2) is not None else val
num = int(m.group(3)) if m.group(3) is not None else int(end_val-start_val)
valslist_ext += [int(x) for x in np.linspace(start=start_val, stop=end_val, num=max(2, num)).tolist()]
shared.log.debug(f'XYZ grid range: start={start_val} end={end_val} num={max(2, num)} list={valslist}')
else:
valslist_ext.append(int(val))
valslist.clear()
valslist = [x for x in valslist_ext if x not in valslist]
elif opt.type == float:
valslist_ext = []
for val in valslist:
m = re_range.fullmatch(val)
if m is not None:
start_val = float(m.group(1)) if m.group(1) is not None else val
end_val = float(m.group(2)) if m.group(2) is not None else val
num = int(m.group(3)) if m.group(3) is not None else int(end_val-start_val)
valslist_ext += [round(float(x), 2) for x in np.linspace(start=start_val, stop=end_val, num=max(2, num)).tolist()]
shared.log.debug(f'XYZ grid range: start={start_val} end={end_val} num={max(2, num)} list={valslist}')
else:
valslist_ext.append(float(val))
valslist.clear()
valslist = [x for x in valslist_ext if x not in valslist]
elif opt.type == str_permutations: # pylint: disable=comparison-with-callable
valslist = list(permutations(valslist))
valslist = [opt.type(x) for x in valslist]
# Confirm options are valid before starting
if opt.confirm:
opt.confirm(p, valslist)
return valslist
x_opt = self.current_axis_options[x_type]
if x_opt.choices is not None and not csv_mode:
x_values = list_to_csv_string(x_values_dropdown)
xs = process_axis(x_opt, x_values, x_values_dropdown)
y_opt = self.current_axis_options[y_type]
if y_opt.choices is not None and not csv_mode:
y_values = list_to_csv_string(y_values_dropdown)
ys = process_axis(y_opt, y_values, y_values_dropdown)
z_opt = self.current_axis_options[z_type]
if z_opt.choices is not None and not csv_mode:
z_values = list_to_csv_string(z_values_dropdown)
zs = process_axis(z_opt, z_values, z_values_dropdown)
Image.MAX_IMAGE_PIXELS = None # disable check in Pillow and rely on check below to allow large custom image sizes
def fix_axis_seeds(axis_opt, axis_list):
if axis_opt.label in ['Seed', 'Var. seed']:
return [int(random.randrange(4294967294)) if val is None or val == '' or val == -1 else val for val in axis_list]
else:
return axis_list
if not no_fixed_seeds:
xs = fix_axis_seeds(x_opt, xs)
ys = fix_axis_seeds(y_opt, ys)
zs = fix_axis_seeds(z_opt, zs)
if x_opt.label == 'Steps':
total_steps = sum(xs) * len(ys) * len(zs)
elif y_opt.label == 'Steps':
total_steps = sum(ys) * len(xs) * len(zs)
elif z_opt.label == 'Steps':
total_steps = sum(zs) * len(xs) * len(ys)
else:
total_steps = p.steps * len(xs) * len(ys) * len(zs)
if isinstance(p, processing.StableDiffusionProcessingTxt2Img) and p.enable_hr:
if x_opt.label == "Hires steps":
total_steps += sum(xs) * len(ys) * len(zs)
elif y_opt.label == "Hires steps":
total_steps += sum(ys) * len(xs) * len(zs)
elif z_opt.label == "Hires steps":
total_steps += sum(zs) * len(xs) * len(ys)
elif p.hr_second_pass_steps:
total_steps += p.hr_second_pass_steps * len(xs) * len(ys) * len(zs)
else:
total_steps *= 2
total_steps *= p.n_iter
image_cell_count = p.n_iter * p.batch_size
shared.log.info(f"XYZ grid: images={len(xs)*len(ys)*len(zs)*image_cell_count} grid={len(zs)} {len(xs)}x{len(ys)} cells={len(zs)} steps={total_steps}")
AxisInfo = namedtuple('AxisInfo', ['axis', 'values'])
shared.state.xyz_plot_x = AxisInfo(x_opt, xs)
shared.state.xyz_plot_y = AxisInfo(y_opt, ys)
shared.state.xyz_plot_z = AxisInfo(z_opt, zs)
# If one of the axes is very slow to change between (like SD model checkpoint), then make sure it is in the outer iteration of the nested `for` loop.
first_axes_processed = 'z'
second_axes_processed = 'y'
if x_opt.cost > y_opt.cost and x_opt.cost > z_opt.cost:
first_axes_processed = 'x'
if y_opt.cost > z_opt.cost:
second_axes_processed = 'y'
else:
second_axes_processed = 'z'
elif y_opt.cost > x_opt.cost and y_opt.cost > z_opt.cost:
first_axes_processed = 'y'
if x_opt.cost > z_opt.cost:
second_axes_processed = 'x'
else:
second_axes_processed = 'z'
elif z_opt.cost > x_opt.cost and z_opt.cost > y_opt.cost:
first_axes_processed = 'z'
if x_opt.cost > y_opt.cost:
second_axes_processed = 'x'
else:
second_axes_processed = 'y'
grid_infotext = [None] * (1 + len(zs))
def cell(x, y, z, ix, iy, iz):
if shared.state.interrupted:
return processing.Processed(p, [], p.seed, "")
pc = copy(p)
pc.override_settings_restore_afterwards = False
pc.styles = pc.styles[:]
x_opt.apply(pc, x, xs)
y_opt.apply(pc, y, ys)
z_opt.apply(pc, z, zs)
try:
res = processing.process_images(pc)
except Exception as e:
shared.log.error(f"XYZ grid: Failed to process image: {e}")
errors.display(e, 'XYZ grid')
res = None
subgrid_index = 1 + iz # Sets subgrid infotexts
if grid_infotext[subgrid_index] is None and ix == 0 and iy == 0:
pc.extra_generation_params = copy(pc.extra_generation_params)
pc.extra_generation_params['Script'] = self.title()
if x_opt.label != 'Nothing':
pc.extra_generation_params["X Type"] = x_opt.label
pc.extra_generation_params["X Values"] = x_values
if x_opt.label in ["Seed", "Var. seed"] and not no_fixed_seeds:
pc.extra_generation_params["Fixed X Values"] = ", ".join([str(x) for x in xs])
if y_opt.label != 'Nothing':
pc.extra_generation_params["Y Type"] = y_opt.label
pc.extra_generation_params["Y Values"] = y_values
if y_opt.label in ["Seed", "Var. seed"] and not no_fixed_seeds:
pc.extra_generation_params["Fixed Y Values"] = ", ".join([str(y) for y in ys])
grid_infotext[subgrid_index] = processing.create_infotext(pc, pc.all_prompts, pc.all_seeds, pc.all_subseeds)
if grid_infotext[0] is None and ix == 0 and iy == 0 and iz == 0: # Sets main grid infotext
pc.extra_generation_params = copy(pc.extra_generation_params)
if z_opt.label != 'Nothing':
pc.extra_generation_params["Z Type"] = z_opt.label
pc.extra_generation_params["Z Values"] = z_values
if z_opt.label in ["Seed", "Var. seed"] and not no_fixed_seeds:
pc.extra_generation_params["Fixed Z Values"] = ", ".join([str(z) for z in zs])
grid_infotext[0] = processing.create_infotext(pc, pc.all_prompts, pc.all_seeds, pc.all_subseeds)
return res
with SharedSettingsStackHelper():
processed = draw_xyz_grid(
p,
xs=xs,
ys=ys,
zs=zs,
x_labels=[x_opt.format_value(p, x_opt, x) for x in xs],
y_labels=[y_opt.format_value(p, y_opt, y) for y in ys],
z_labels=[z_opt.format_value(p, z_opt, z) for z in zs],
cell=cell,
draw_legend=draw_legend,
include_lone_images=include_lone_images,
include_sub_grids=include_sub_grids,
first_axes_processed=first_axes_processed,
second_axes_processed=second_axes_processed,
margin_size=margin_size,
no_grid=no_grid,
)
if not processed.images:
return processed # It broke, no further handling needed.
z_count = len(zs)
processed.infotexts[:1+z_count] = grid_infotext[:1+z_count] # Set the grid infotexts to the real ones with extra_generation_params (1 main grid + z_count sub-grids)
if not include_lone_images:
# Don't need sub-images anymore, drop from list:
if no_grid and include_sub_grids:
processed.images = processed.images[:z_count] # we don't have the main grid image, and need zero additional sub-images
else:
processed.images = processed.images[:z_count+1] # we either have the main grid image, or need one sub-images
if shared.opts.grid_save: # Auto-save main and sub-grids:
grid_count = z_count + ( 1 if not no_grid and z_count > 1 else 0 )
for g in range(grid_count):
adj_g = g-1 if g > 0 else g
images.save_image(processed.images[g], p.outpath_grids, "xyz_grid", info=processed.infotexts[g], extension=shared.opts.grid_format, prompt=processed.all_prompts[adj_g], seed=processed.all_seeds[adj_g], grid=True, p=processed)
if not include_sub_grids: # Done with sub-grids, drop all related information:
for _sg in range(z_count):
del processed.images[1]
del processed.all_prompts[1]
del processed.all_seeds[1]
del processed.infotexts[1]
elif no_grid:
# del processed.images[0]
# del processed.all_prompts[0]
# del processed.all_seeds[0]
del processed.infotexts[0]
return processed
|