Spaces:
Runtime error
Runtime error
import os | |
import argparse | |
import torch | |
from diffusers import StableDiffusionPipeline, StableDiffusionXLPipeline, AutoPipelineForText2Image, LCMScheduler | |
parser = argparse.ArgumentParser("lcm_convert") | |
parser.add_argument("--name", help="Name of the new LCM model", type=str) | |
parser.add_argument("--model", help="A model to convert", type=str) | |
parser.add_argument("--lora-scale", default=1.0, help="Strenght of the LCM", type=float) | |
parser.add_argument("--huggingface", action="store_true", help="Use Hugging Face models instead of safetensors models") | |
parser.add_argument("--upload", action="store_true", help="Upload the new LCM model to Hugging Face") | |
parser.add_argument("--no-half", action="store_true", help="Convert the new LCM model to FP32") | |
parser.add_argument("--no-save", action="store_true", help="Don't save the new LCM model to local disk") | |
parser.add_argument("--sdxl", action="store_true", help="Use SDXL models") | |
parser.add_argument("--ssd-1b", action="store_true", help="Use SSD-1B models") | |
args = parser.parse_args() | |
if args.huggingface: | |
pipeline = AutoPipelineForText2Image.from_pretrained(args.model, torch_dtype=torch.float16, variant="fp16") | |
else: | |
if args.sdxl or args.ssd_1b: | |
pipeline = StableDiffusionXLPipeline.from_single_file(args.model) | |
else: | |
pipeline = StableDiffusionPipeline.from_single_file(args.model) | |
pipeline.scheduler = LCMScheduler.from_config(pipeline.scheduler.config) | |
if args.sdxl: | |
pipeline.load_lora_weights("latent-consistency/lcm-lora-sdxl") | |
elif args.ssd_1b: | |
pipeline.load_lora_weights("latent-consistency/lcm-lora-ssd-1b") | |
else: | |
pipeline.load_lora_weights("latent-consistency/lcm-lora-sdv1-5") | |
pipeline.fuse_lora(lora_scale=args.lora_scale) | |
#components = pipeline.components | |
#pipeline = LatentConsistencyModelPipeline(**components) | |
if args.no_half: | |
pipeline = pipeline.to(dtype=torch.float32) | |
else: | |
pipeline = pipeline.to(dtype=torch.float16) | |
print(pipeline) | |
if not args.no_save: | |
os.makedirs(f"models--local--{args.name}/snapshots") | |
if args.no_half: | |
pipeline.save_pretrained(f"models--local--{args.name}/snapshots/{args.name}") | |
else: | |
pipeline.save_pretrained(f"models--local--{args.name}/snapshots/{args.name}", variant="fp16") | |
if args.upload: | |
if args.no_half: | |
pipeline.push_to_hub(args.name) | |
else: | |
pipeline.push_to_hub(args.name, variant="fp16") | |