Spaces:
Runtime error
Runtime error
import os | |
import html | |
import json | |
import time | |
import shutil | |
import torch | |
import tqdm | |
import gradio as gr | |
import safetensors.torch | |
from modules.merging.merge import merge_models | |
from modules.merging.merge_utils import TRIPLE_METHODS | |
from modules import shared, images, sd_models, sd_vae, sd_models_config, devices | |
def run_pnginfo(image): | |
if image is None: | |
return '', '', '' | |
geninfo, items = images.read_info_from_image(image) | |
items = {**{'parameters': geninfo}, **items} | |
info = '' | |
for key, text in items.items(): | |
if key != 'UserComment': | |
info += f"<div><b>{html.escape(str(key))}</b>: {html.escape(str(text))}</div>" | |
return '', geninfo, info | |
def create_config(ckpt_result, config_source, a, b, c): | |
def config(x): | |
res = sd_models_config.find_checkpoint_config_near_filename(x) if x else None | |
return res if res != shared.sd_default_config else None | |
if config_source == 0: | |
cfg = config(a) or config(b) or config(c) | |
elif config_source == 1: | |
cfg = config(b) | |
elif config_source == 2: | |
cfg = config(c) | |
else: | |
cfg = None | |
if cfg is None: | |
return | |
filename, _ = os.path.splitext(ckpt_result) | |
checkpoint_filename = filename + ".yaml" | |
shared.log.info("Copying config: {cfg} -> {checkpoint_filename}") | |
shutil.copyfile(cfg, checkpoint_filename) | |
def to_half(tensor, enable): | |
if enable and tensor.dtype == torch.float: | |
return tensor.half() | |
return tensor | |
def run_modelmerger(id_task, **kwargs): # pylint: disable=unused-argument | |
shared.state.begin('merge') | |
t0 = time.time() | |
def fail(message): | |
shared.state.textinfo = message | |
shared.state.end() | |
return [*[gr.update() for _ in range(4)], message] | |
kwargs["models"] = { | |
"model_a": sd_models.get_closet_checkpoint_match(kwargs.get("primary_model_name", None)).filename, | |
"model_b": sd_models.get_closet_checkpoint_match(kwargs.get("secondary_model_name", None)).filename, | |
} | |
if kwargs.get("primary_model_name", None) in [None, 'None']: | |
return fail("Failed: Merging requires a primary model.") | |
primary_model_info = sd_models.get_closet_checkpoint_match(kwargs.get("primary_model_name", None)) | |
if kwargs.get("secondary_model_name", None) in [None, 'None']: | |
return fail("Failed: Merging requires a secondary model.") | |
secondary_model_info = sd_models.get_closet_checkpoint_match(kwargs.get("secondary_model_name", None)) | |
if kwargs.get("tertiary_model_name", None) in [None, 'None'] and kwargs.get("merge_mode", None) in TRIPLE_METHODS: | |
return fail(f"Failed: Interpolation method ({kwargs.get('merge_mode', None)}) requires a tertiary model.") | |
tertiary_model_info = sd_models.get_closet_checkpoint_match(kwargs.get("tertiary_model_name", None)) if kwargs.get("merge_mode", None) in TRIPLE_METHODS else None | |
del kwargs["primary_model_name"] | |
del kwargs["secondary_model_name"] | |
if kwargs.get("tertiary_model_name", None) is not None: | |
kwargs["models"] |= {"model_c": sd_models.get_closet_checkpoint_match(kwargs.get("tertiary_model_name", None)).filename} | |
del kwargs["tertiary_model_name"] | |
if kwargs.get("alpha_base", None) and kwargs.get("alpha_in_blocks", None) and kwargs.get("alpha_mid_block", None) and kwargs.get("alpha_out_blocks", None): | |
try: | |
alpha = [float(x) for x in | |
[kwargs["alpha_base"]] + kwargs["alpha_in_blocks"].split(",") + [kwargs["alpha_mid_block"]] + kwargs["alpha_out_blocks"].split(",")] | |
assert len(alpha) == 26 or len(alpha) == 20, "Alpha Block Weights are wrong length (26 or 20 for SDXL)" | |
kwargs["alpha"] = alpha | |
except KeyError as ke: | |
shared.log.warning(f"Merge: Malformed manual block weight: {ke}") | |
elif kwargs.get("alpha_preset", None) or kwargs.get("alpha", None): | |
kwargs["alpha"] = kwargs.get("alpha_preset", kwargs["alpha"]) | |
kwargs.pop("alpha_base", None) | |
kwargs.pop("alpha_in_blocks", None) | |
kwargs.pop("alpha_mid_block", None) | |
kwargs.pop("alpha_out_blocks", None) | |
kwargs.pop("alpha_preset", None) | |
if kwargs.get("beta_base", None) and kwargs.get("beta_in_blocks", None) and kwargs.get("beta_mid_block", None) and kwargs.get("beta_out_blocks", None): | |
try: | |
beta = [float(x) for x in | |
[kwargs["beta_base"]] + kwargs["beta_in_blocks"].split(",") + [kwargs["beta_mid_block"]] + kwargs["beta_out_blocks"].split(",")] | |
assert len(beta) == 26 or len(beta) == 20, "Beta Block Weights are wrong length (26 or 20 for SDXL)" | |
kwargs["beta"] = beta | |
except KeyError as ke: | |
shared.log.warning(f"Merge: Malformed manual block weight: {ke}") | |
elif kwargs.get("beta_preset", None) or kwargs.get("beta", None): | |
kwargs["beta"] = kwargs.get("beta_preset", kwargs["beta"]) | |
kwargs.pop("beta_base", None) | |
kwargs.pop("beta_in_blocks", None) | |
kwargs.pop("beta_mid_block", None) | |
kwargs.pop("beta_out_blocks", None) | |
kwargs.pop("beta_preset", None) | |
if kwargs["device"] == "gpu": | |
kwargs["device"] = devices.device | |
elif kwargs["device"] == "shuffle": | |
kwargs["device"] = torch.device("cpu") | |
kwargs["work_device"] = devices.device | |
else: | |
kwargs["device"] = torch.device("cpu") | |
if kwargs.pop("unload", False): | |
sd_models.unload_model_weights() | |
try: | |
theta_0 = merge_models(**kwargs) | |
except Exception as e: | |
return fail(f"{e}") | |
try: | |
theta_0 = theta_0.to_dict() #TensorDict -> Dict if necessary | |
except Exception: | |
pass | |
bake_in_vae_filename = sd_vae.vae_dict.get(kwargs.get("bake_in_vae", None), None) | |
if bake_in_vae_filename is not None: | |
shared.log.info(f"Merge VAE='{bake_in_vae_filename}'") | |
shared.state.textinfo = 'Merge VAE' | |
vae_dict = sd_vae.load_vae_dict(bake_in_vae_filename) | |
for key in vae_dict.keys(): | |
theta_0_key = 'first_stage_model.' + key | |
if theta_0_key in theta_0: | |
theta_0[theta_0_key] = to_half(vae_dict[key], kwargs.get("precision", "fp16") == "fp16") | |
del vae_dict | |
ckpt_dir = shared.opts.ckpt_dir or sd_models.model_path | |
filename = kwargs.get("custom_name", "Unnamed_Merge") | |
filename += "." + kwargs.get("checkpoint_format", None) | |
output_modelname = os.path.join(ckpt_dir, filename) | |
shared.state.textinfo = "merge saving" | |
metadata = None | |
if kwargs.get("save_metadata", False): | |
metadata = {"format": "pt", "sd_merge_models": {}} | |
merge_recipe = { | |
"type": "SDNext", # indicate this model was merged with webui's built-in merger | |
"primary_model_hash": primary_model_info.sha256, | |
"secondary_model_hash": secondary_model_info.sha256 if secondary_model_info else None, | |
"tertiary_model_hash": tertiary_model_info.sha256 if tertiary_model_info else None, | |
"merge_mode": kwargs.get('merge_mode', None), | |
"alpha": kwargs.get('alpha', None), | |
"beta": kwargs.get('beta', None), | |
"precision": kwargs.get('precision', None), | |
"custom_name": kwargs.get("custom_name", "Unamed_Merge"), | |
} | |
metadata["sd_merge_recipe"] = json.dumps(merge_recipe) | |
def add_model_metadata(checkpoint_info): | |
checkpoint_info.calculate_shorthash() | |
metadata["sd_merge_models"][checkpoint_info.sha256] = { | |
"name": checkpoint_info.name, | |
"legacy_hash": checkpoint_info.hash, | |
"sd_merge_recipe": checkpoint_info.metadata.get("sd_merge_recipe", None) | |
} | |
metadata["sd_merge_models"].update(checkpoint_info.metadata.get("sd_merge_models", {})) | |
add_model_metadata(primary_model_info) | |
if secondary_model_info: | |
add_model_metadata(secondary_model_info) | |
if tertiary_model_info: | |
add_model_metadata(tertiary_model_info) | |
metadata["sd_merge_models"] = json.dumps(metadata["sd_merge_models"]) | |
_, extension = os.path.splitext(output_modelname) | |
if os.path.exists(output_modelname) and not kwargs.get("overwrite", False): | |
return [*[gr.Dropdown.update(choices=sd_models.checkpoint_tiles()) for _ in range(4)], f"Model alredy exists: {output_modelname}"] | |
if extension.lower() == ".safetensors": | |
safetensors.torch.save_file(theta_0, output_modelname, metadata=metadata) | |
else: | |
torch.save(theta_0, output_modelname) | |
t1 = time.time() | |
shared.log.info(f"Merge complete: saved='{output_modelname}' time={t1-t0:.2f}") | |
sd_models.list_models() | |
created_model = next((ckpt for ckpt in sd_models.checkpoints_list.values() if ckpt.name == filename), None) | |
if created_model: | |
created_model.calculate_shorthash() | |
devices.torch_gc(force=True) | |
shared.state.end() | |
return [*[gr.Dropdown.update(choices=sd_models.checkpoint_tiles()) for _ in range(4)], f"Model saved to {output_modelname}"] | |
def run_modelconvert(model, checkpoint_formats, precision, conv_type, custom_name, unet_conv, text_encoder_conv, | |
vae_conv, others_conv, fix_clip): | |
# position_ids in clip is int64. model_ema.num_updates is int32 | |
dtypes_to_fp16 = {torch.float32, torch.float64, torch.bfloat16} | |
dtypes_to_bf16 = {torch.float32, torch.float64, torch.float16} | |
def conv_fp16(t: torch.Tensor): | |
return t.half() if t.dtype in dtypes_to_fp16 else t | |
def conv_bf16(t: torch.Tensor): | |
return t.bfloat16() if t.dtype in dtypes_to_bf16 else t | |
def conv_full(t): | |
return t | |
_g_precision_func = { | |
"full": conv_full, | |
"fp32": conv_full, | |
"fp16": conv_fp16, | |
"bf16": conv_bf16, | |
} | |
def check_weight_type(k: str) -> str: | |
if k.startswith("model.diffusion_model"): | |
return "unet" | |
elif k.startswith("first_stage_model"): | |
return "vae" | |
elif k.startswith("cond_stage_model"): | |
return "clip" | |
return "other" | |
def load_model(path): | |
if path.endswith(".safetensors"): | |
m = safetensors.torch.load_file(path, device="cpu") | |
else: | |
m = torch.load(path, map_location="cpu") | |
state_dict = m["state_dict"] if "state_dict" in m else m | |
return state_dict | |
def fix_model(model, fix_clip=False): | |
# code from model-toolkit | |
nai_keys = { | |
'cond_stage_model.transformer.embeddings.': 'cond_stage_model.transformer.text_model.embeddings.', | |
'cond_stage_model.transformer.encoder.': 'cond_stage_model.transformer.text_model.encoder.', | |
'cond_stage_model.transformer.final_layer_norm.': 'cond_stage_model.transformer.text_model.final_layer_norm.' | |
} | |
for k in list(model.keys()): | |
for r in nai_keys: | |
if type(k) == str and k.startswith(r): | |
new_key = k.replace(r, nai_keys[r]) | |
model[new_key] = model[k] | |
del model[k] | |
shared.log.warning(f"Model convert: fixed NovelAI error key: {k}") | |
break | |
if fix_clip: | |
i = "cond_stage_model.transformer.text_model.embeddings.position_ids" | |
if i in model: | |
correct = torch.Tensor([list(range(77))]).to(torch.int64) | |
now = model[i].to(torch.int64) | |
broken = correct.ne(now) | |
broken = [i for i in range(77) if broken[0][i]] | |
model[i] = correct | |
if len(broken) != 0: | |
shared.log.warning(f"Model convert: fixed broken CLiP: {broken}") | |
return model | |
if model == "": | |
return "Error: you must choose a model" | |
if len(checkpoint_formats) == 0: | |
return "Error: at least choose one model save format" | |
extra_opt = { | |
"unet": unet_conv, | |
"clip": text_encoder_conv, | |
"vae": vae_conv, | |
"other": others_conv | |
} | |
shared.state.begin('convert') | |
model_info = sd_models.checkpoints_list[model] | |
shared.state.textinfo = f"Loading {model_info.filename}..." | |
shared.log.info(f"Model convert loading: {model_info.filename}") | |
state_dict = load_model(model_info.filename) | |
ok = {} # {"state_dict": {}} | |
conv_func = _g_precision_func[precision] | |
def _hf(wk: str, t: torch.Tensor): | |
if not isinstance(t, torch.Tensor): | |
return | |
w_t = check_weight_type(wk) | |
conv_t = extra_opt[w_t] | |
if conv_t == "convert": | |
ok[wk] = conv_func(t) | |
elif conv_t == "copy": | |
ok[wk] = t | |
elif conv_t == "delete": | |
return | |
shared.log.info("Model convert: running") | |
if conv_type == "ema-only": | |
for k in tqdm.tqdm(state_dict): | |
ema_k = "___" | |
try: | |
ema_k = "model_ema." + k[6:].replace(".", "") | |
except Exception: | |
pass | |
if ema_k in state_dict: | |
_hf(k, state_dict[ema_k]) | |
elif not k.startswith("model_ema.") or k in ["model_ema.num_updates", "model_ema.decay"]: | |
_hf(k, state_dict[k]) | |
elif conv_type == "no-ema": | |
for k, v in tqdm.tqdm(state_dict.items()): | |
if "model_ema." not in k: | |
_hf(k, v) | |
else: | |
for k, v in tqdm.tqdm(state_dict.items()): | |
_hf(k, v) | |
ok = fix_model(ok, fix_clip=fix_clip) | |
output = "" | |
ckpt_dir = shared.cmd_opts.ckpt_dir or sd_models.model_path | |
save_name = f"{model_info.model_name}-{precision}" | |
if conv_type != "disabled": | |
save_name += f"-{conv_type}" | |
if custom_name != "": | |
save_name = custom_name | |
for fmt in checkpoint_formats: | |
ext = ".safetensors" if fmt == "safetensors" else ".ckpt" | |
_save_name = save_name + ext | |
save_path = os.path.join(ckpt_dir, _save_name) | |
shared.log.info(f"Model convert saving: {save_path}") | |
if fmt == "safetensors": | |
safetensors.torch.save_file(ok, save_path) | |
else: | |
torch.save({"state_dict": ok}, save_path) | |
output += f"Checkpoint saved to {save_path}<br>" | |
shared.state.end() | |
return output | |