test / modules /face /instantid.py
bilegentile's picture
Upload folder using huggingface_hub
c19ca42 verified
import os
import cv2
import torch
import numpy as np
import huggingface_hub as hf
from modules import shared, processing, sd_models, devices
REPO_ID = "InstantX/InstantID"
controlnet_model = None
debug = shared.log.trace if os.environ.get('SD_FACE_DEBUG', None) is not None else lambda *args, **kwargs: None
def instant_id(p: processing.StableDiffusionProcessing, app, source_images, strength=1.0, conditioning=0.5, cache=True): # pylint: disable=arguments-differ
from modules.face.instantid_model import StableDiffusionXLInstantIDPipeline, draw_kps
from diffusers.models import ControlNetModel
global controlnet_model # pylint: disable=global-statement
# prepare pipeline
if source_images is None or len(source_images) == 0:
shared.log.warning('InstantID: no input images')
return None
c = shared.sd_model.__class__.__name__ if shared.sd_model is not None else ''
if c != 'StableDiffusionXLPipeline':
shared.log.warning(f'InstantID invalid base model: current={c} required=StableDiffusionXLPipeline')
return None
# prepare face emb
face_embeds = []
face_images = []
for i, source_image in enumerate(source_images):
faces = app.get(cv2.cvtColor(np.array(source_image), cv2.COLOR_RGB2BGR))
face = sorted(faces, key=lambda x:(x['bbox'][2]-x['bbox'][0])*x['bbox'][3]-x['bbox'][1])[-1] # only use the maximum face
face_embeds.append(torch.from_numpy(face['embedding']))
face_images.append(draw_kps(source_image, face['kps']))
p.extra_generation_params[f"InstantID {i+1}"] = f'{faces[0].det_score:.2f} {"female" if faces[0].gender==0 else "male"} {faces[0].age}y'
shared.log.debug(f'InstantID face: score={face.det_score:.2f} gender={"female" if face.gender==0 else "male"} age={face.age} bbox={face.bbox}')
shared.log.debug(f'InstantID loading: model={REPO_ID}')
face_adapter = hf.hf_hub_download(repo_id=REPO_ID, filename="ip-adapter.bin")
if controlnet_model is None or not cache:
controlnet_model = ControlNetModel.from_pretrained(REPO_ID, subfolder="ControlNetModel", torch_dtype=devices.dtype, cache_dir=shared.opts.diffusers_dir)
sd_models.move_model(controlnet_model, devices.device)
processing.process_init(p)
# create new pipeline
orig_pipeline = shared.sd_model # backup current pipeline definition
shared.sd_model = StableDiffusionXLInstantIDPipeline(
vae = shared.sd_model.vae,
text_encoder=shared.sd_model.text_encoder,
text_encoder_2=shared.sd_model.text_encoder_2,
tokenizer=shared.sd_model.tokenizer,
tokenizer_2=shared.sd_model.tokenizer_2,
unet=shared.sd_model.unet,
scheduler=shared.sd_model.scheduler,
controlnet=controlnet_model,
force_zeros_for_empty_prompt=shared.opts.diffusers_force_zeros,
)
sd_models.copy_diffuser_options(shared.sd_model, orig_pipeline) # copy options from original pipeline
sd_models.set_diffuser_options(shared.sd_model) # set all model options such as fp16, offload, etc.
shared.sd_model.load_ip_adapter_instantid(face_adapter, scale=strength)
shared.sd_model.set_ip_adapter_scale(strength)
sd_models.move_model(shared.sd_model, devices.device) # move pipeline to device
shared.sd_model.to(dtype=devices.dtype)
# pipeline specific args
orig_prompt_attention = shared.opts.prompt_attention
shared.opts.data['prompt_attention'] = 'Fixed attention' # otherwise need to deal with class_tokens_mask
p.task_args['image_embeds'] = face_embeds[0].shape # placeholder
p.task_args['image'] = face_images[0]
p.task_args['controlnet_conditioning_scale'] = float(conditioning)
p.task_args['ip_adapter_scale'] = float(strength)
shared.log.debug(f"InstantID args: {p.task_args}")
p.task_args['prompt'] = p.all_prompts[0] # override all logic
p.task_args['negative_prompt'] = p.all_negative_prompts[0]
p.task_args['image_embeds'] = face_embeds[0] # overwrite placeholder
# run processing
processed: processing.Processed = processing.process_images(p)
shared.sd_model.set_ip_adapter_scale(0)
p.extra_generation_params['InstantID'] = f'{strength}/{conditioning}'
if not cache:
controlnet_model = None
devices.torch_gc()
# restore original pipeline
shared.opts.data['prompt_attention'] = orig_prompt_attention
shared.sd_model = orig_pipeline
return processed