Spaces:
Runtime error
Runtime error
""" | |
wild mixture of | |
https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py | |
https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py | |
https://github.com/CompVis/taming-transformers | |
-- merci | |
""" | |
# File modified by authors of InstructPix2Pix from original (https://github.com/CompVis/stable-diffusion). | |
# See more details in LICENSE. | |
import torch | |
import torch.nn as nn | |
import numpy as np | |
import pytorch_lightning as pl | |
from torch.optim.lr_scheduler import LambdaLR | |
from einops import rearrange, repeat | |
from contextlib import contextmanager | |
from functools import partial | |
from tqdm import tqdm | |
from torchvision.utils import make_grid | |
from pytorch_lightning.utilities.distributed import rank_zero_only | |
from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config | |
from ldm.modules.ema import LitEma | |
from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution | |
from ldm.models.autoencoder import VQModelInterface, IdentityFirstStage, AutoencoderKL | |
from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like | |
from ldm.models.diffusion.ddim import DDIMSampler | |
__conditioning_keys__ = {'concat': 'c_concat', | |
'crossattn': 'c_crossattn', | |
'adm': 'y'} | |
def disabled_train(self, mode=True): | |
"""Overwrite model.train with this function to make sure train/eval mode | |
does not change anymore.""" | |
return self | |
def uniform_on_device(r1, r2, shape, device): | |
return (r1 - r2) * torch.rand(*shape, device=device) + r2 | |
class DDPM(pl.LightningModule): | |
# classic DDPM with Gaussian diffusion, in image space | |
def __init__(self, | |
unet_config, | |
timesteps=1000, | |
beta_schedule="linear", | |
loss_type="l2", | |
ckpt_path=None, | |
ignore_keys=None, | |
load_only_unet=False, | |
monitor="val/loss", | |
use_ema=True, | |
first_stage_key="image", | |
image_size=256, | |
channels=3, | |
log_every_t=100, | |
clip_denoised=True, | |
linear_start=1e-4, | |
linear_end=2e-2, | |
cosine_s=8e-3, | |
given_betas=None, | |
original_elbo_weight=0., | |
v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta | |
l_simple_weight=1., | |
conditioning_key=None, | |
parameterization="eps", # all assuming fixed variance schedules | |
scheduler_config=None, | |
use_positional_encodings=False, | |
learn_logvar=False, | |
logvar_init=0., | |
load_ema=True, | |
): | |
super().__init__() | |
assert parameterization in ["eps", "x0"], 'currently only supporting "eps" and "x0"' | |
self.parameterization = parameterization | |
print(f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode") | |
self.cond_stage_model = None | |
self.clip_denoised = clip_denoised | |
self.log_every_t = log_every_t | |
self.first_stage_key = first_stage_key | |
self.image_size = image_size # try conv? | |
self.channels = channels | |
self.use_positional_encodings = use_positional_encodings | |
self.model = DiffusionWrapper(unet_config, conditioning_key) | |
count_params(self.model, verbose=True) | |
self.use_ema = use_ema | |
self.use_scheduler = scheduler_config is not None | |
if self.use_scheduler: | |
self.scheduler_config = scheduler_config | |
self.v_posterior = v_posterior | |
self.original_elbo_weight = original_elbo_weight | |
self.l_simple_weight = l_simple_weight | |
if monitor is not None: | |
self.monitor = monitor | |
if self.use_ema and load_ema: | |
self.model_ema = LitEma(self.model) | |
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") | |
if ckpt_path is not None: | |
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys or [], only_model=load_only_unet) | |
# If initialing from EMA-only checkpoint, create EMA model after loading. | |
if self.use_ema and not load_ema: | |
self.model_ema = LitEma(self.model) | |
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") | |
self.register_schedule(given_betas=given_betas, beta_schedule=beta_schedule, timesteps=timesteps, | |
linear_start=linear_start, linear_end=linear_end, cosine_s=cosine_s) | |
self.loss_type = loss_type | |
self.learn_logvar = learn_logvar | |
self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,)) | |
if self.learn_logvar: | |
self.logvar = nn.Parameter(self.logvar, requires_grad=True) | |
def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000, | |
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): | |
if exists(given_betas): | |
betas = given_betas | |
else: | |
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, | |
cosine_s=cosine_s) | |
alphas = 1. - betas | |
alphas_cumprod = np.cumprod(alphas, axis=0) | |
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1]) | |
timesteps, = betas.shape | |
self.num_timesteps = int(timesteps) | |
self.linear_start = linear_start | |
self.linear_end = linear_end | |
assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep' | |
to_torch = partial(torch.tensor, dtype=torch.float32) | |
self.register_buffer('betas', to_torch(betas)) | |
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) | |
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev)) | |
# calculations for diffusion q(x_t | x_{t-1}) and others | |
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod))) | |
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod))) | |
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod))) | |
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod))) | |
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1))) | |
# calculations for posterior q(x_{t-1} | x_t, x_0) | |
posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / ( | |
1. - alphas_cumprod) + self.v_posterior * betas | |
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t) | |
self.register_buffer('posterior_variance', to_torch(posterior_variance)) | |
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain | |
self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20)))) | |
self.register_buffer('posterior_mean_coef1', to_torch( | |
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))) | |
self.register_buffer('posterior_mean_coef2', to_torch( | |
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod))) | |
if self.parameterization == "eps": | |
lvlb_weights = self.betas ** 2 / ( | |
2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod)) | |
elif self.parameterization == "x0": | |
lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod)) | |
else: | |
raise NotImplementedError("mu not supported") | |
lvlb_weights[0] = lvlb_weights[1] | |
self.register_buffer('lvlb_weights', lvlb_weights, persistent=False) | |
assert not torch.isnan(self.lvlb_weights).all() | |
def ema_scope(self, context=None): | |
if self.use_ema: | |
self.model_ema.store(self.model.parameters()) | |
self.model_ema.copy_to(self.model) | |
if context is not None: | |
print(f"{context}: Switched to EMA weights") | |
try: | |
yield None | |
finally: | |
if self.use_ema: | |
self.model_ema.restore(self.model.parameters()) | |
if context is not None: | |
print(f"{context}: Restored training weights") | |
def init_from_ckpt(self, path, ignore_keys=None, only_model=False): | |
ignore_keys = ignore_keys or [] | |
sd = torch.load(path, map_location="cpu") | |
if "state_dict" in list(sd.keys()): | |
sd = sd["state_dict"] | |
keys = list(sd.keys()) | |
# Our model adds additional channels to the first layer to condition on an input image. | |
# For the first layer, copy existing channel weights and initialize new channel weights to zero. | |
input_keys = [ | |
"model.diffusion_model.input_blocks.0.0.weight", | |
"model_ema.diffusion_modelinput_blocks00weight", | |
] | |
self_sd = self.state_dict() | |
for input_key in input_keys: | |
if input_key not in sd or input_key not in self_sd: | |
continue | |
input_weight = self_sd[input_key] | |
if input_weight.size() != sd[input_key].size(): | |
print(f"Manual init: {input_key}") | |
input_weight.zero_() | |
input_weight[:, :4, :, :].copy_(sd[input_key]) | |
ignore_keys.append(input_key) | |
for k in keys: | |
for ik in ignore_keys: | |
if k.startswith(ik): | |
print(f"Deleting key {k} from state_dict.") | |
del sd[k] | |
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict( | |
sd, strict=False) | |
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys") | |
if len(missing) > 0: | |
print(f"Missing Keys: {missing}") | |
if len(unexpected) > 0: | |
print(f"Unexpected Keys: {unexpected}") | |
def q_mean_variance(self, x_start, t): | |
""" | |
Get the distribution q(x_t | x_0). | |
:param x_start: the [N x C x ...] tensor of noiseless inputs. | |
:param t: the number of diffusion steps (minus 1). Here, 0 means one step. | |
:return: A tuple (mean, variance, log_variance), all of x_start's shape. | |
""" | |
mean = (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start) | |
variance = extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape) | |
log_variance = extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape) | |
return mean, variance, log_variance | |
def predict_start_from_noise(self, x_t, t, noise): | |
return ( | |
extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - | |
extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise | |
) | |
def q_posterior(self, x_start, x_t, t): | |
posterior_mean = ( | |
extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start + | |
extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t | |
) | |
posterior_variance = extract_into_tensor(self.posterior_variance, t, x_t.shape) | |
posterior_log_variance_clipped = extract_into_tensor(self.posterior_log_variance_clipped, t, x_t.shape) | |
return posterior_mean, posterior_variance, posterior_log_variance_clipped | |
def p_mean_variance(self, x, t, clip_denoised: bool): | |
model_out = self.model(x, t) | |
if self.parameterization == "eps": | |
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) | |
elif self.parameterization == "x0": | |
x_recon = model_out | |
if clip_denoised: | |
x_recon.clamp_(-1., 1.) | |
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) | |
return model_mean, posterior_variance, posterior_log_variance | |
def p_sample(self, x, t, clip_denoised=True, repeat_noise=False): | |
b, *_, device = *x.shape, x.device | |
model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, clip_denoised=clip_denoised) | |
noise = noise_like(x.shape, device, repeat_noise) | |
# no noise when t == 0 | |
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) | |
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise | |
def p_sample_loop(self, shape, return_intermediates=False): | |
device = self.betas.device | |
b = shape[0] | |
img = torch.randn(shape, device=device) | |
intermediates = [img] | |
for i in tqdm(reversed(range(0, self.num_timesteps)), desc='Sampling t', total=self.num_timesteps): | |
img = self.p_sample(img, torch.full((b,), i, device=device, dtype=torch.long), | |
clip_denoised=self.clip_denoised) | |
if i % self.log_every_t == 0 or i == self.num_timesteps - 1: | |
intermediates.append(img) | |
if return_intermediates: | |
return img, intermediates | |
return img | |
def sample(self, batch_size=16, return_intermediates=False): | |
image_size = self.image_size | |
channels = self.channels | |
return self.p_sample_loop((batch_size, channels, image_size, image_size), | |
return_intermediates=return_intermediates) | |
def q_sample(self, x_start, t, noise=None): | |
noise = default(noise, lambda: torch.randn_like(x_start)) | |
return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + | |
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise) | |
def get_loss(self, pred, target, mean=True): | |
if self.loss_type == 'l1': | |
loss = (target - pred).abs() | |
if mean: | |
loss = loss.mean() | |
elif self.loss_type == 'l2': | |
if mean: | |
loss = torch.nn.functional.mse_loss(target, pred) | |
else: | |
loss = torch.nn.functional.mse_loss(target, pred, reduction='none') | |
else: | |
raise NotImplementedError("unknown loss type '{loss_type}'") | |
return loss | |
def p_losses(self, x_start, t, noise=None): | |
noise = default(noise, lambda: torch.randn_like(x_start)) | |
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) | |
model_out = self.model(x_noisy, t) | |
loss_dict = {} | |
if self.parameterization == "eps": | |
target = noise | |
elif self.parameterization == "x0": | |
target = x_start | |
else: | |
raise NotImplementedError(f"Paramterization {self.parameterization} not yet supported") | |
loss = self.get_loss(model_out, target, mean=False).mean(dim=[1, 2, 3]) | |
log_prefix = 'train' if self.training else 'val' | |
loss_dict.update({f'{log_prefix}/loss_simple': loss.mean()}) | |
loss_simple = loss.mean() * self.l_simple_weight | |
loss_vlb = (self.lvlb_weights[t] * loss).mean() | |
loss_dict.update({f'{log_prefix}/loss_vlb': loss_vlb}) | |
loss = loss_simple + self.original_elbo_weight * loss_vlb | |
loss_dict.update({f'{log_prefix}/loss': loss}) | |
return loss, loss_dict | |
def forward(self, x, *args, **kwargs): | |
# b, c, h, w, device, img_size, = *x.shape, x.device, self.image_size | |
# assert h == img_size and w == img_size, f'height and width of image must be {img_size}' | |
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long() | |
return self.p_losses(x, t, *args, **kwargs) | |
def get_input(self, batch, k): | |
return batch[k] | |
def shared_step(self, batch): | |
x = self.get_input(batch, self.first_stage_key) | |
loss, loss_dict = self(x) | |
return loss, loss_dict | |
def training_step(self, batch, batch_idx): | |
loss, loss_dict = self.shared_step(batch) | |
self.log_dict(loss_dict, prog_bar=True, | |
logger=True, on_step=True, on_epoch=True) | |
self.log("global_step", self.global_step, | |
prog_bar=True, logger=True, on_step=True, on_epoch=False) | |
if self.use_scheduler: | |
lr = self.optimizers().param_groups[0]['lr'] | |
self.log('lr_abs', lr, prog_bar=True, logger=True, on_step=True, on_epoch=False) | |
return loss | |
def validation_step(self, batch, batch_idx): | |
_, loss_dict_no_ema = self.shared_step(batch) | |
with self.ema_scope(): | |
_, loss_dict_ema = self.shared_step(batch) | |
loss_dict_ema = {f"{key}_ema": loss_dict_ema[key] for key in loss_dict_ema} | |
self.log_dict(loss_dict_no_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True) | |
self.log_dict(loss_dict_ema, prog_bar=False, logger=True, on_step=False, on_epoch=True) | |
def on_train_batch_end(self, *args, **kwargs): | |
if self.use_ema: | |
self.model_ema(self.model) | |
def _get_rows_from_list(self, samples): | |
n_imgs_per_row = len(samples) | |
denoise_grid = rearrange(samples, 'n b c h w -> b n c h w') | |
denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w') | |
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row) | |
return denoise_grid | |
def log_images(self, batch, N=8, n_row=2, sample=True, return_keys=None, **kwargs): | |
log = {} | |
x = self.get_input(batch, self.first_stage_key) | |
N = min(x.shape[0], N) | |
n_row = min(x.shape[0], n_row) | |
x = x.to(self.device)[:N] | |
log["inputs"] = x | |
# get diffusion row | |
diffusion_row = [] | |
x_start = x[:n_row] | |
for t in range(self.num_timesteps): | |
if t % self.log_every_t == 0 or t == self.num_timesteps - 1: | |
t = repeat(torch.tensor([t]), '1 -> b', b=n_row) | |
t = t.to(self.device).long() | |
noise = torch.randn_like(x_start) | |
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) | |
diffusion_row.append(x_noisy) | |
log["diffusion_row"] = self._get_rows_from_list(diffusion_row) | |
if sample: | |
# get denoise row | |
with self.ema_scope("Plotting"): | |
samples, denoise_row = self.sample(batch_size=N, return_intermediates=True) | |
log["samples"] = samples | |
log["denoise_row"] = self._get_rows_from_list(denoise_row) | |
if return_keys: | |
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0: | |
return log | |
else: | |
return {key: log[key] for key in return_keys} | |
return log | |
def configure_optimizers(self): | |
lr = self.learning_rate | |
params = list(self.model.parameters()) | |
if self.learn_logvar: | |
params = params + [self.logvar] | |
opt = torch.optim.AdamW(params, lr=lr) | |
return opt | |
class LatentDiffusion(DDPM): | |
"""main class""" | |
def __init__(self, | |
first_stage_config, | |
cond_stage_config, | |
num_timesteps_cond=None, | |
cond_stage_key="image", | |
cond_stage_trainable=False, | |
concat_mode=True, | |
cond_stage_forward=None, | |
conditioning_key=None, | |
scale_factor=1.0, | |
scale_by_std=False, | |
load_ema=True, | |
*args, **kwargs): | |
self.num_timesteps_cond = default(num_timesteps_cond, 1) | |
self.scale_by_std = scale_by_std | |
assert self.num_timesteps_cond <= kwargs['timesteps'] | |
# for backwards compatibility after implementation of DiffusionWrapper | |
if conditioning_key is None: | |
conditioning_key = 'concat' if concat_mode else 'crossattn' | |
if cond_stage_config == '__is_unconditional__': | |
conditioning_key = None | |
ckpt_path = kwargs.pop("ckpt_path", None) | |
ignore_keys = kwargs.pop("ignore_keys", []) | |
super().__init__(*args, conditioning_key=conditioning_key, load_ema=load_ema, **kwargs) | |
self.concat_mode = concat_mode | |
self.cond_stage_trainable = cond_stage_trainable | |
self.cond_stage_key = cond_stage_key | |
try: | |
self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1 | |
except Exception: | |
self.num_downs = 0 | |
if not scale_by_std: | |
self.scale_factor = scale_factor | |
else: | |
self.register_buffer('scale_factor', torch.tensor(scale_factor)) | |
self.instantiate_first_stage(first_stage_config) | |
self.instantiate_cond_stage(cond_stage_config) | |
self.cond_stage_forward = cond_stage_forward | |
self.clip_denoised = False | |
self.bbox_tokenizer = None | |
self.restarted_from_ckpt = False | |
if ckpt_path is not None: | |
self.init_from_ckpt(ckpt_path, ignore_keys) | |
self.restarted_from_ckpt = True | |
if self.use_ema and not load_ema: | |
self.model_ema = LitEma(self.model) | |
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.") | |
def make_cond_schedule(self, ): | |
self.cond_ids = torch.full(size=(self.num_timesteps,), fill_value=self.num_timesteps - 1, dtype=torch.long) | |
ids = torch.round(torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)).long() | |
self.cond_ids[:self.num_timesteps_cond] = ids | |
def on_train_batch_start(self, batch, batch_idx, dataloader_idx): | |
# only for very first batch | |
if self.scale_by_std and self.current_epoch == 0 and self.global_step == 0 and batch_idx == 0 and not self.restarted_from_ckpt: | |
assert self.scale_factor == 1., 'rather not use custom rescaling and std-rescaling simultaneously' | |
# set rescale weight to 1./std of encodings | |
print("### USING STD-RESCALING ###") | |
x = super().get_input(batch, self.first_stage_key) | |
x = x.to(self.device) | |
encoder_posterior = self.encode_first_stage(x) | |
z = self.get_first_stage_encoding(encoder_posterior).detach() | |
del self.scale_factor | |
self.register_buffer('scale_factor', 1. / z.flatten().std()) | |
print(f"setting self.scale_factor to {self.scale_factor}") | |
print("### USING STD-RESCALING ###") | |
def register_schedule(self, | |
given_betas=None, beta_schedule="linear", timesteps=1000, | |
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): | |
super().register_schedule(given_betas, beta_schedule, timesteps, linear_start, linear_end, cosine_s) | |
self.shorten_cond_schedule = self.num_timesteps_cond > 1 | |
if self.shorten_cond_schedule: | |
self.make_cond_schedule() | |
def instantiate_first_stage(self, config): | |
model = instantiate_from_config(config) | |
self.first_stage_model = model.eval() | |
self.first_stage_model.train = disabled_train | |
for param in self.first_stage_model.parameters(): | |
param.requires_grad = False | |
def instantiate_cond_stage(self, config): | |
if not self.cond_stage_trainable: | |
if config == "__is_first_stage__": | |
print("Using first stage also as cond stage.") | |
self.cond_stage_model = self.first_stage_model | |
elif config == "__is_unconditional__": | |
print(f"Training {self.__class__.__name__} as an unconditional model.") | |
self.cond_stage_model = None | |
# self.be_unconditional = True | |
else: | |
model = instantiate_from_config(config) | |
self.cond_stage_model = model.eval() | |
self.cond_stage_model.train = disabled_train | |
for param in self.cond_stage_model.parameters(): | |
param.requires_grad = False | |
else: | |
assert config != '__is_first_stage__' | |
assert config != '__is_unconditional__' | |
model = instantiate_from_config(config) | |
self.cond_stage_model = model | |
def _get_denoise_row_from_list(self, samples, desc='', force_no_decoder_quantization=False): | |
denoise_row = [] | |
for zd in tqdm(samples, desc=desc): | |
denoise_row.append(self.decode_first_stage(zd.to(self.device), | |
force_not_quantize=force_no_decoder_quantization)) | |
n_imgs_per_row = len(denoise_row) | |
denoise_row = torch.stack(denoise_row) # n_log_step, n_row, C, H, W | |
denoise_grid = rearrange(denoise_row, 'n b c h w -> b n c h w') | |
denoise_grid = rearrange(denoise_grid, 'b n c h w -> (b n) c h w') | |
denoise_grid = make_grid(denoise_grid, nrow=n_imgs_per_row) | |
return denoise_grid | |
def get_first_stage_encoding(self, encoder_posterior): | |
if isinstance(encoder_posterior, DiagonalGaussianDistribution): | |
z = encoder_posterior.sample() | |
elif isinstance(encoder_posterior, torch.Tensor): | |
z = encoder_posterior | |
else: | |
raise NotImplementedError(f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented") | |
return self.scale_factor * z | |
def get_learned_conditioning(self, c): | |
if self.cond_stage_forward is None: | |
if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode): | |
c = self.cond_stage_model.encode(c) | |
if isinstance(c, DiagonalGaussianDistribution): | |
c = c.mode() | |
else: | |
c = self.cond_stage_model(c) | |
else: | |
assert hasattr(self.cond_stage_model, self.cond_stage_forward) | |
c = getattr(self.cond_stage_model, self.cond_stage_forward)(c) | |
return c | |
def meshgrid(self, h, w): | |
y = torch.arange(0, h).view(h, 1, 1).repeat(1, w, 1) | |
x = torch.arange(0, w).view(1, w, 1).repeat(h, 1, 1) | |
arr = torch.cat([y, x], dim=-1) | |
return arr | |
def delta_border(self, h, w): | |
""" | |
:param h: height | |
:param w: width | |
:return: normalized distance to image border, | |
wtith min distance = 0 at border and max dist = 0.5 at image center | |
""" | |
lower_right_corner = torch.tensor([h - 1, w - 1]).view(1, 1, 2) | |
arr = self.meshgrid(h, w) / lower_right_corner | |
dist_left_up = torch.min(arr, dim=-1, keepdims=True)[0] | |
dist_right_down = torch.min(1 - arr, dim=-1, keepdims=True)[0] | |
edge_dist = torch.min(torch.cat([dist_left_up, dist_right_down], dim=-1), dim=-1)[0] | |
return edge_dist | |
def get_weighting(self, h, w, Ly, Lx, device): | |
weighting = self.delta_border(h, w) | |
weighting = torch.clip(weighting, self.split_input_params["clip_min_weight"], | |
self.split_input_params["clip_max_weight"], ) | |
weighting = weighting.view(1, h * w, 1).repeat(1, 1, Ly * Lx).to(device) | |
if self.split_input_params["tie_braker"]: | |
L_weighting = self.delta_border(Ly, Lx) | |
L_weighting = torch.clip(L_weighting, | |
self.split_input_params["clip_min_tie_weight"], | |
self.split_input_params["clip_max_tie_weight"]) | |
L_weighting = L_weighting.view(1, 1, Ly * Lx).to(device) | |
weighting = weighting * L_weighting | |
return weighting | |
def get_fold_unfold(self, x, kernel_size, stride, uf=1, df=1): | |
""" | |
:param x: img of size (bs, c, h, w) | |
:return: n img crops of size (n, bs, c, kernel_size[0], kernel_size[1]) | |
""" | |
bs, nc, h, w = x.shape | |
# number of crops in image | |
Ly = (h - kernel_size[0]) // stride[0] + 1 | |
Lx = (w - kernel_size[1]) // stride[1] + 1 | |
if uf == 1 and df == 1: | |
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride) | |
unfold = torch.nn.Unfold(**fold_params) | |
fold = torch.nn.Fold(output_size=x.shape[2:], **fold_params) | |
weighting = self.get_weighting(kernel_size[0], kernel_size[1], Ly, Lx, x.device).to(x.dtype) | |
normalization = fold(weighting).view(1, 1, h, w) # normalizes the overlap | |
weighting = weighting.view((1, 1, kernel_size[0], kernel_size[1], Ly * Lx)) | |
elif uf > 1 and df == 1: | |
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride) | |
unfold = torch.nn.Unfold(**fold_params) | |
fold_params2 = dict(kernel_size=(kernel_size[0] * uf, kernel_size[0] * uf), | |
dilation=1, padding=0, | |
stride=(stride[0] * uf, stride[1] * uf)) | |
fold = torch.nn.Fold(output_size=(x.shape[2] * uf, x.shape[3] * uf), **fold_params2) | |
weighting = self.get_weighting(kernel_size[0] * uf, kernel_size[1] * uf, Ly, Lx, x.device).to(x.dtype) | |
normalization = fold(weighting).view(1, 1, h * uf, w * uf) # normalizes the overlap | |
weighting = weighting.view((1, 1, kernel_size[0] * uf, kernel_size[1] * uf, Ly * Lx)) | |
elif df > 1 and uf == 1: | |
fold_params = dict(kernel_size=kernel_size, dilation=1, padding=0, stride=stride) | |
unfold = torch.nn.Unfold(**fold_params) | |
fold_params2 = dict(kernel_size=(kernel_size[0] // df, kernel_size[0] // df), | |
dilation=1, padding=0, | |
stride=(stride[0] // df, stride[1] // df)) | |
fold = torch.nn.Fold(output_size=(x.shape[2] // df, x.shape[3] // df), **fold_params2) | |
weighting = self.get_weighting(kernel_size[0] // df, kernel_size[1] // df, Ly, Lx, x.device).to(x.dtype) | |
normalization = fold(weighting).view(1, 1, h // df, w // df) # normalizes the overlap | |
weighting = weighting.view((1, 1, kernel_size[0] // df, kernel_size[1] // df, Ly * Lx)) | |
else: | |
raise NotImplementedError | |
return fold, unfold, normalization, weighting | |
def get_input(self, batch, k, return_first_stage_outputs=False, force_c_encode=False, | |
cond_key=None, return_original_cond=False, bs=None, uncond=0.05): | |
x = super().get_input(batch, k) | |
if bs is not None: | |
x = x[:bs] | |
x = x.to(self.device) | |
encoder_posterior = self.encode_first_stage(x) | |
z = self.get_first_stage_encoding(encoder_posterior).detach() | |
cond_key = cond_key or self.cond_stage_key | |
xc = super().get_input(batch, cond_key) | |
if bs is not None: | |
xc["c_crossattn"] = xc["c_crossattn"][:bs] | |
xc["c_concat"] = xc["c_concat"][:bs] | |
cond = {} | |
# To support classifier-free guidance, randomly drop out only text conditioning 5%, only image conditioning 5%, and both 5%. | |
random = torch.rand(x.size(0), device=x.device) | |
prompt_mask = rearrange(random < 2 * uncond, "n -> n 1 1") | |
input_mask = 1 - rearrange((random >= uncond).float() * (random < 3 * uncond).float(), "n -> n 1 1 1") | |
null_prompt = self.get_learned_conditioning([""]) | |
cond["c_crossattn"] = [torch.where(prompt_mask, null_prompt, self.get_learned_conditioning(xc["c_crossattn"]).detach())] | |
cond["c_concat"] = [input_mask * self.encode_first_stage((xc["c_concat"].to(self.device))).mode().detach()] | |
out = [z, cond] | |
if return_first_stage_outputs: | |
xrec = self.decode_first_stage(z) | |
out.extend([x, xrec]) | |
if return_original_cond: | |
out.append(xc) | |
return out | |
def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False): | |
if predict_cids: | |
if z.dim() == 4: | |
z = torch.argmax(z.exp(), dim=1).long() | |
z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None) | |
z = rearrange(z, 'b h w c -> b c h w').contiguous() | |
z = 1. / self.scale_factor * z | |
if hasattr(self, "split_input_params"): | |
if self.split_input_params["patch_distributed_vq"]: | |
ks = self.split_input_params["ks"] # eg. (128, 128) | |
stride = self.split_input_params["stride"] # eg. (64, 64) | |
uf = self.split_input_params["vqf"] | |
bs, nc, h, w = z.shape | |
if ks[0] > h or ks[1] > w: | |
ks = (min(ks[0], h), min(ks[1], w)) | |
print("reducing Kernel") | |
if stride[0] > h or stride[1] > w: | |
stride = (min(stride[0], h), min(stride[1], w)) | |
print("reducing stride") | |
fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf) | |
z = unfold(z) # (bn, nc * prod(**ks), L) | |
# 1. Reshape to img shape | |
z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L ) | |
# 2. apply model loop over last dim | |
if isinstance(self.first_stage_model, VQModelInterface): | |
output_list = [self.first_stage_model.decode(z[:, :, :, :, i], | |
force_not_quantize=predict_cids or force_not_quantize) | |
for i in range(z.shape[-1])] | |
else: | |
output_list = [self.first_stage_model.decode(z[:, :, :, :, i]) | |
for i in range(z.shape[-1])] | |
o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L) | |
o = o * weighting | |
# Reverse 1. reshape to img shape | |
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L) | |
# stitch crops together | |
decoded = fold(o) | |
decoded = decoded / normalization # norm is shape (1, 1, h, w) | |
return decoded | |
else: | |
if isinstance(self.first_stage_model, VQModelInterface): | |
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize) | |
else: | |
return self.first_stage_model.decode(z) | |
else: | |
if isinstance(self.first_stage_model, VQModelInterface): | |
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize) | |
else: | |
return self.first_stage_model.decode(z) | |
# same as above but without decorator | |
def differentiable_decode_first_stage(self, z, predict_cids=False, force_not_quantize=False): | |
if predict_cids: | |
if z.dim() == 4: | |
z = torch.argmax(z.exp(), dim=1).long() | |
z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None) | |
z = rearrange(z, 'b h w c -> b c h w').contiguous() | |
z = 1. / self.scale_factor * z | |
if hasattr(self, "split_input_params"): | |
if self.split_input_params["patch_distributed_vq"]: | |
ks = self.split_input_params["ks"] # eg. (128, 128) | |
stride = self.split_input_params["stride"] # eg. (64, 64) | |
uf = self.split_input_params["vqf"] | |
bs, nc, h, w = z.shape | |
if ks[0] > h or ks[1] > w: | |
ks = (min(ks[0], h), min(ks[1], w)) | |
print("reducing Kernel") | |
if stride[0] > h or stride[1] > w: | |
stride = (min(stride[0], h), min(stride[1], w)) | |
print("reducing stride") | |
fold, unfold, normalization, weighting = self.get_fold_unfold(z, ks, stride, uf=uf) | |
z = unfold(z) # (bn, nc * prod(**ks), L) | |
# 1. Reshape to img shape | |
z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L ) | |
# 2. apply model loop over last dim | |
if isinstance(self.first_stage_model, VQModelInterface): | |
output_list = [self.first_stage_model.decode(z[:, :, :, :, i], | |
force_not_quantize=predict_cids or force_not_quantize) | |
for i in range(z.shape[-1])] | |
else: | |
output_list = [self.first_stage_model.decode(z[:, :, :, :, i]) | |
for i in range(z.shape[-1])] | |
o = torch.stack(output_list, axis=-1) # # (bn, nc, ks[0], ks[1], L) | |
o = o * weighting | |
# Reverse 1. reshape to img shape | |
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L) | |
# stitch crops together | |
decoded = fold(o) | |
decoded = decoded / normalization # norm is shape (1, 1, h, w) | |
return decoded | |
else: | |
if isinstance(self.first_stage_model, VQModelInterface): | |
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize) | |
else: | |
return self.first_stage_model.decode(z) | |
else: | |
if isinstance(self.first_stage_model, VQModelInterface): | |
return self.first_stage_model.decode(z, force_not_quantize=predict_cids or force_not_quantize) | |
else: | |
return self.first_stage_model.decode(z) | |
def encode_first_stage(self, x): | |
if hasattr(self, "split_input_params"): | |
if self.split_input_params["patch_distributed_vq"]: | |
ks = self.split_input_params["ks"] # eg. (128, 128) | |
stride = self.split_input_params["stride"] # eg. (64, 64) | |
df = self.split_input_params["vqf"] | |
self.split_input_params['original_image_size'] = x.shape[-2:] | |
bs, nc, h, w = x.shape | |
if ks[0] > h or ks[1] > w: | |
ks = (min(ks[0], h), min(ks[1], w)) | |
print("reducing Kernel") | |
if stride[0] > h or stride[1] > w: | |
stride = (min(stride[0], h), min(stride[1], w)) | |
print("reducing stride") | |
fold, unfold, normalization, weighting = self.get_fold_unfold(x, ks, stride, df=df) | |
z = unfold(x) # (bn, nc * prod(**ks), L) | |
# Reshape to img shape | |
z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L ) | |
output_list = [self.first_stage_model.encode(z[:, :, :, :, i]) | |
for i in range(z.shape[-1])] | |
o = torch.stack(output_list, axis=-1) | |
o = o * weighting | |
# Reverse reshape to img shape | |
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L) | |
# stitch crops together | |
decoded = fold(o) | |
decoded = decoded / normalization | |
return decoded | |
else: | |
return self.first_stage_model.encode(x) | |
else: | |
return self.first_stage_model.encode(x) | |
def shared_step(self, batch, **kwargs): | |
x, c = self.get_input(batch, self.first_stage_key) | |
loss = self(x, c) | |
return loss | |
def forward(self, x, c, *args, **kwargs): | |
t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=self.device).long() | |
if self.model.conditioning_key is not None: | |
assert c is not None | |
if self.cond_stage_trainable: | |
c = self.get_learned_conditioning(c) | |
if self.shorten_cond_schedule: | |
tc = self.cond_ids[t].to(self.device) | |
c = self.q_sample(x_start=c, t=tc, noise=torch.randn_like(c.float())) | |
return self.p_losses(x, c, t, *args, **kwargs) | |
def apply_model(self, x_noisy, t, cond, return_ids=False): | |
if isinstance(cond, dict): | |
# hybrid case, cond is exptected to be a dict | |
pass | |
else: | |
if not isinstance(cond, list): | |
cond = [cond] | |
key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn' | |
cond = {key: cond} | |
if hasattr(self, "split_input_params"): | |
assert len(cond) == 1 # todo can only deal with one conditioning atm | |
assert not return_ids | |
ks = self.split_input_params["ks"] # eg. (128, 128) | |
stride = self.split_input_params["stride"] # eg. (64, 64) | |
h, w = x_noisy.shape[-2:] | |
fold, unfold, normalization, weighting = self.get_fold_unfold(x_noisy, ks, stride) | |
z = unfold(x_noisy) # (bn, nc * prod(**ks), L) | |
# Reshape to img shape | |
z = z.view((z.shape[0], -1, ks[0], ks[1], z.shape[-1])) # (bn, nc, ks[0], ks[1], L ) | |
z_list = [z[:, :, :, :, i] for i in range(z.shape[-1])] | |
if self.cond_stage_key in ["image", "LR_image", "segmentation", | |
'bbox_img'] and self.model.conditioning_key: | |
c_key = next(iter(cond.keys())) # get key | |
c = next(iter(cond.values())) # get value | |
assert (len(c) == 1) # todo extend to list with more than one elem | |
c = c[0] # get element | |
c = unfold(c) | |
c = c.view((c.shape[0], -1, ks[0], ks[1], c.shape[-1])) # (bn, nc, ks[0], ks[1], L ) | |
cond_list = [{c_key: [c[:, :, :, :, i]]} for i in range(c.shape[-1])] | |
elif self.cond_stage_key == 'coordinates_bbox': | |
assert 'original_image_size' in self.split_input_params, 'BoudingBoxRescaling is missing original_image_size' | |
# assuming padding of unfold is always 0 and its dilation is always 1 | |
n_patches_per_row = int((w - ks[0]) / stride[0] + 1) | |
full_img_h, full_img_w = self.split_input_params['original_image_size'] | |
# as we are operating on latents, we need the factor from the original image size to the | |
# spatial latent size to properly rescale the crops for regenerating the bbox annotations | |
num_downs = self.first_stage_model.encoder.num_resolutions - 1 | |
rescale_latent = 2 ** (num_downs) | |
# get top left postions of patches as conforming for the bbbox tokenizer, therefore we | |
# need to rescale the tl patch coordinates to be in between (0,1) | |
tl_patch_coordinates = [(rescale_latent * stride[0] * (patch_nr % n_patches_per_row) / full_img_w, | |
rescale_latent * stride[1] * (patch_nr // n_patches_per_row) / full_img_h) | |
for patch_nr in range(z.shape[-1])] | |
# patch_limits are tl_coord, width and height coordinates as (x_tl, y_tl, h, w) | |
patch_limits = [(x_tl, y_tl, | |
rescale_latent * ks[0] / full_img_w, | |
rescale_latent * ks[1] / full_img_h) for x_tl, y_tl in tl_patch_coordinates] | |
# patch_values = [(np.arange(x_tl,min(x_tl+ks, 1.)),np.arange(y_tl,min(y_tl+ks, 1.))) for x_tl, y_tl in tl_patch_coordinates] | |
# tokenize crop coordinates for the bounding boxes of the respective patches | |
patch_limits_tknzd = [torch.LongTensor(self.bbox_tokenizer._crop_encoder(bbox))[None].to(self.device) | |
for bbox in patch_limits] # list of length l with tensors of shape (1, 2) | |
print(patch_limits_tknzd[0].shape) | |
# cut tknzd crop position from conditioning | |
assert isinstance(cond, dict), 'cond must be dict to be fed into model' | |
cut_cond = cond['c_crossattn'][0][..., :-2].to(self.device) | |
print(cut_cond.shape) | |
adapted_cond = torch.stack([torch.cat([cut_cond, p], dim=1) for p in patch_limits_tknzd]) | |
adapted_cond = rearrange(adapted_cond, 'l b n -> (l b) n') | |
print(adapted_cond.shape) | |
adapted_cond = self.get_learned_conditioning(adapted_cond) | |
print(adapted_cond.shape) | |
adapted_cond = rearrange(adapted_cond, '(l b) n d -> l b n d', l=z.shape[-1]) | |
print(adapted_cond.shape) | |
cond_list = [{'c_crossattn': [e]} for e in adapted_cond] | |
else: | |
cond_list = [cond for i in range(z.shape[-1])] | |
# apply model by loop over crops | |
output_list = [self.model(z_list[i], t, **cond_list[i]) for i in range(z.shape[-1])] | |
assert not isinstance(output_list[0], tuple) | |
o = torch.stack(output_list, axis=-1) | |
o = o * weighting | |
# Reverse reshape to img shape | |
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L) | |
# stitch crops together | |
x_recon = fold(o) / normalization | |
else: | |
x_recon = self.model(x_noisy, t, **cond) | |
if isinstance(x_recon, tuple) and not return_ids: | |
return x_recon[0] | |
else: | |
return x_recon | |
def _predict_eps_from_xstart(self, x_t, t, pred_xstart): | |
return (extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart) / \ | |
extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) | |
def _prior_bpd(self, x_start): | |
""" | |
Get the prior KL term for the variational lower-bound, measured in | |
bits-per-dim. | |
This term can't be optimized, as it only depends on the encoder. | |
:param x_start: the [N x C x ...] tensor of inputs. | |
:return: a batch of [N] KL values (in bits), one per batch element. | |
""" | |
batch_size = x_start.shape[0] | |
t = torch.tensor([self.num_timesteps - 1] * batch_size, device=x_start.device) | |
qt_mean, _, qt_log_variance = self.q_mean_variance(x_start, t) | |
kl_prior = normal_kl(mean1=qt_mean, logvar1=qt_log_variance, mean2=0.0, logvar2=0.0) | |
return mean_flat(kl_prior) / np.log(2.0) | |
def p_losses(self, x_start, cond, t, noise=None): | |
noise = default(noise, lambda: torch.randn_like(x_start)) | |
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) | |
model_output = self.apply_model(x_noisy, t, cond) | |
loss_dict = {} | |
prefix = 'train' if self.training else 'val' | |
if self.parameterization == "x0": | |
target = x_start | |
elif self.parameterization == "eps": | |
target = noise | |
else: | |
raise NotImplementedError | |
loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3]) | |
loss_dict.update({f'{prefix}/loss_simple': loss_simple.mean()}) | |
logvar_t = self.logvar[t].to(self.device) | |
loss = loss_simple / torch.exp(logvar_t) + logvar_t | |
# loss = loss_simple / torch.exp(self.logvar) + self.logvar | |
if self.learn_logvar: | |
loss_dict.update({f'{prefix}/loss_gamma': loss.mean()}) | |
loss_dict.update({'logvar': self.logvar.data.mean()}) | |
loss = self.l_simple_weight * loss.mean() | |
loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3)) | |
loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean() | |
loss_dict.update({f'{prefix}/loss_vlb': loss_vlb}) | |
loss += (self.original_elbo_weight * loss_vlb) | |
loss_dict.update({f'{prefix}/loss': loss}) | |
return loss, loss_dict | |
def p_mean_variance(self, x, c, t, clip_denoised: bool, return_codebook_ids=False, quantize_denoised=False, | |
return_x0=False, score_corrector=None, corrector_kwargs=None): | |
t_in = t | |
model_out = self.apply_model(x, t_in, c, return_ids=return_codebook_ids) | |
if score_corrector is not None: | |
assert self.parameterization == "eps" | |
model_out = score_corrector.modify_score(self, model_out, x, t, c, **corrector_kwargs) | |
if return_codebook_ids: | |
model_out, logits = model_out | |
if self.parameterization == "eps": | |
x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) | |
elif self.parameterization == "x0": | |
x_recon = model_out | |
else: | |
raise NotImplementedError | |
if clip_denoised: | |
x_recon.clamp_(-1., 1.) | |
if quantize_denoised: | |
x_recon, _, [_, _, indices] = self.first_stage_model.quantize(x_recon) | |
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) | |
if return_codebook_ids: | |
return model_mean, posterior_variance, posterior_log_variance, logits | |
elif return_x0: | |
return model_mean, posterior_variance, posterior_log_variance, x_recon | |
else: | |
return model_mean, posterior_variance, posterior_log_variance | |
def p_sample(self, x, c, t, clip_denoised=False, repeat_noise=False, | |
return_codebook_ids=False, quantize_denoised=False, return_x0=False, | |
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None): | |
b, *_, device = *x.shape, x.device | |
outputs = self.p_mean_variance(x=x, c=c, t=t, clip_denoised=clip_denoised, | |
return_codebook_ids=return_codebook_ids, | |
quantize_denoised=quantize_denoised, | |
return_x0=return_x0, | |
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs) | |
if return_codebook_ids: | |
raise DeprecationWarning("Support dropped.") | |
model_mean, _, model_log_variance, logits = outputs | |
elif return_x0: | |
model_mean, _, model_log_variance, x0 = outputs | |
else: | |
model_mean, _, model_log_variance = outputs | |
noise = noise_like(x.shape, device, repeat_noise) * temperature | |
if noise_dropout > 0.: | |
noise = torch.nn.functional.dropout(noise, p=noise_dropout) | |
# no noise when t == 0 | |
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) | |
if return_codebook_ids: | |
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, logits.argmax(dim=1) | |
if return_x0: | |
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0 | |
else: | |
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise | |
def progressive_denoising(self, cond, shape, verbose=True, callback=None, quantize_denoised=False, | |
img_callback=None, mask=None, x0=None, temperature=1., noise_dropout=0., | |
score_corrector=None, corrector_kwargs=None, batch_size=None, x_T=None, start_T=None, | |
log_every_t=None): | |
if not log_every_t: | |
log_every_t = self.log_every_t | |
timesteps = self.num_timesteps | |
if batch_size is not None: | |
b = batch_size if batch_size is not None else shape[0] | |
shape = [batch_size] + list(shape) | |
else: | |
b = batch_size = shape[0] | |
if x_T is None: | |
img = torch.randn(shape, device=self.device) | |
else: | |
img = x_T | |
intermediates = [] | |
if cond is not None: | |
if isinstance(cond, dict): | |
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else | |
[x[:batch_size] for x in cond[key]] for key in cond} | |
else: | |
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size] | |
if start_T is not None: | |
timesteps = min(timesteps, start_T) | |
iterator = tqdm(reversed(range(0, timesteps)), desc='Progressive Generation', | |
total=timesteps) if verbose else reversed( | |
range(0, timesteps)) | |
if type(temperature) == float: | |
temperature = [temperature] * timesteps | |
for i in iterator: | |
ts = torch.full((b,), i, device=self.device, dtype=torch.long) | |
if self.shorten_cond_schedule: | |
assert self.model.conditioning_key != 'hybrid' | |
tc = self.cond_ids[ts].to(cond.device) | |
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond)) | |
img, x0_partial = self.p_sample(img, cond, ts, | |
clip_denoised=self.clip_denoised, | |
quantize_denoised=quantize_denoised, return_x0=True, | |
temperature=temperature[i], noise_dropout=noise_dropout, | |
score_corrector=score_corrector, corrector_kwargs=corrector_kwargs) | |
if mask is not None: | |
assert x0 is not None | |
img_orig = self.q_sample(x0, ts) | |
img = img_orig * mask + (1. - mask) * img | |
if i % log_every_t == 0 or i == timesteps - 1: | |
intermediates.append(x0_partial) | |
if callback: | |
callback(i) | |
if img_callback: | |
img_callback(img, i) | |
return img, intermediates | |
def p_sample_loop(self, cond, shape, return_intermediates=False, | |
x_T=None, verbose=True, callback=None, timesteps=None, quantize_denoised=False, | |
mask=None, x0=None, img_callback=None, start_T=None, | |
log_every_t=None): | |
if not log_every_t: | |
log_every_t = self.log_every_t | |
device = self.betas.device | |
b = shape[0] | |
if x_T is None: | |
img = torch.randn(shape, device=device) | |
else: | |
img = x_T | |
intermediates = [img] | |
if timesteps is None: | |
timesteps = self.num_timesteps | |
if start_T is not None: | |
timesteps = min(timesteps, start_T) | |
iterator = tqdm(reversed(range(0, timesteps)), desc='Sampling t', total=timesteps) if verbose else reversed( | |
range(0, timesteps)) | |
if mask is not None: | |
assert x0 is not None | |
assert x0.shape[2:3] == mask.shape[2:3] # spatial size has to match | |
for i in iterator: | |
ts = torch.full((b,), i, device=device, dtype=torch.long) | |
if self.shorten_cond_schedule: | |
assert self.model.conditioning_key != 'hybrid' | |
tc = self.cond_ids[ts].to(cond.device) | |
cond = self.q_sample(x_start=cond, t=tc, noise=torch.randn_like(cond)) | |
img = self.p_sample(img, cond, ts, | |
clip_denoised=self.clip_denoised, | |
quantize_denoised=quantize_denoised) | |
if mask is not None: | |
img_orig = self.q_sample(x0, ts) | |
img = img_orig * mask + (1. - mask) * img | |
if i % log_every_t == 0 or i == timesteps - 1: | |
intermediates.append(img) | |
if callback: | |
callback(i) | |
if img_callback: | |
img_callback(img, i) | |
if return_intermediates: | |
return img, intermediates | |
return img | |
def sample(self, cond, batch_size=16, return_intermediates=False, x_T=None, | |
verbose=True, timesteps=None, quantize_denoised=False, | |
mask=None, x0=None, shape=None,**kwargs): | |
if shape is None: | |
shape = (batch_size, self.channels, self.image_size, self.image_size) | |
if cond is not None: | |
if isinstance(cond, dict): | |
cond = {key: cond[key][:batch_size] if not isinstance(cond[key], list) else | |
[x[:batch_size] for x in cond[key]] for key in cond} | |
else: | |
cond = [c[:batch_size] for c in cond] if isinstance(cond, list) else cond[:batch_size] | |
return self.p_sample_loop(cond, | |
shape, | |
return_intermediates=return_intermediates, x_T=x_T, | |
verbose=verbose, timesteps=timesteps, quantize_denoised=quantize_denoised, | |
mask=mask, x0=x0) | |
def sample_log(self,cond,batch_size,ddim, ddim_steps,**kwargs): | |
if ddim: | |
ddim_sampler = DDIMSampler(self) | |
shape = (self.channels, self.image_size, self.image_size) | |
samples, intermediates =ddim_sampler.sample(ddim_steps,batch_size, | |
shape,cond,verbose=False,**kwargs) | |
else: | |
samples, intermediates = self.sample(cond=cond, batch_size=batch_size, | |
return_intermediates=True,**kwargs) | |
return samples, intermediates | |
def log_images(self, batch, N=4, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None, | |
quantize_denoised=True, inpaint=False, plot_denoise_rows=False, plot_progressive_rows=False, | |
plot_diffusion_rows=False, **kwargs): | |
use_ddim = False | |
log = {} | |
z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, | |
return_first_stage_outputs=True, | |
force_c_encode=True, | |
return_original_cond=True, | |
bs=N, uncond=0) | |
N = min(x.shape[0], N) | |
n_row = min(x.shape[0], n_row) | |
log["inputs"] = x | |
log["reals"] = xc["c_concat"] | |
log["reconstruction"] = xrec | |
if self.model.conditioning_key is not None: | |
if hasattr(self.cond_stage_model, "decode"): | |
xc = self.cond_stage_model.decode(c) | |
log["conditioning"] = xc | |
elif self.cond_stage_key in ["caption"]: | |
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["caption"]) | |
log["conditioning"] = xc | |
elif self.cond_stage_key == 'class_label': | |
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"]) | |
log['conditioning'] = xc | |
elif isimage(xc): | |
log["conditioning"] = xc | |
if ismap(xc): | |
log["original_conditioning"] = self.to_rgb(xc) | |
if plot_diffusion_rows: | |
# get diffusion row | |
diffusion_row = list() | |
z_start = z[:n_row] | |
for t in range(self.num_timesteps): | |
if t % self.log_every_t == 0 or t == self.num_timesteps - 1: | |
t = repeat(torch.tensor([t]), '1 -> b', b=n_row) | |
t = t.to(self.device).long() | |
noise = torch.randn_like(z_start) | |
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise) | |
diffusion_row.append(self.decode_first_stage(z_noisy)) | |
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W | |
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w') | |
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w') | |
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0]) | |
log["diffusion_row"] = diffusion_grid | |
if sample: | |
# get denoise row | |
with self.ema_scope("Plotting"): | |
samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, | |
ddim_steps=ddim_steps,eta=ddim_eta) | |
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True) | |
x_samples = self.decode_first_stage(samples) | |
log["samples"] = x_samples | |
if plot_denoise_rows: | |
denoise_grid = self._get_denoise_row_from_list(z_denoise_row) | |
log["denoise_row"] = denoise_grid | |
if quantize_denoised and not isinstance(self.first_stage_model, AutoencoderKL) and not isinstance( | |
self.first_stage_model, IdentityFirstStage): | |
# also display when quantizing x0 while sampling | |
with self.ema_scope("Plotting Quantized Denoised"): | |
samples, z_denoise_row = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, | |
ddim_steps=ddim_steps,eta=ddim_eta, | |
quantize_denoised=True) | |
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True, | |
# quantize_denoised=True) | |
x_samples = self.decode_first_stage(samples.to(self.device)) | |
log["samples_x0_quantized"] = x_samples | |
if inpaint: | |
# make a simple center square | |
h, w = z.shape[2], z.shape[3] | |
mask = torch.ones(N, h, w).to(self.device) | |
# zeros will be filled in | |
mask[:, h // 4:3 * h // 4, w // 4:3 * w // 4] = 0. | |
mask = mask[:, None, ...] | |
with self.ema_scope("Plotting Inpaint"): | |
samples, _ = self.sample_log(cond=c,batch_size=N,ddim=use_ddim, eta=ddim_eta, | |
ddim_steps=ddim_steps, x0=z[:N], mask=mask) | |
x_samples = self.decode_first_stage(samples.to(self.device)) | |
log["samples_inpainting"] = x_samples | |
log["mask"] = mask | |
# outpaint | |
with self.ema_scope("Plotting Outpaint"): | |
samples, _ = self.sample_log(cond=c, batch_size=N, ddim=use_ddim,eta=ddim_eta, | |
ddim_steps=ddim_steps, x0=z[:N], mask=mask) | |
x_samples = self.decode_first_stage(samples.to(self.device)) | |
log["samples_outpainting"] = x_samples | |
if plot_progressive_rows: | |
with self.ema_scope("Plotting Progressives"): | |
img, progressives = self.progressive_denoising(c, | |
shape=(self.channels, self.image_size, self.image_size), | |
batch_size=N) | |
prog_row = self._get_denoise_row_from_list(progressives, desc="Progressive Generation") | |
log["progressive_row"] = prog_row | |
if return_keys: | |
if np.intersect1d(list(log.keys()), return_keys).shape[0] == 0: | |
return log | |
else: | |
return {key: log[key] for key in return_keys} | |
return log | |
def configure_optimizers(self): | |
lr = self.learning_rate | |
params = list(self.model.parameters()) | |
if self.cond_stage_trainable: | |
print(f"{self.__class__.__name__}: Also optimizing conditioner params!") | |
params = params + list(self.cond_stage_model.parameters()) | |
if self.learn_logvar: | |
print('Diffusion model optimizing logvar') | |
params.append(self.logvar) | |
opt = torch.optim.AdamW(params, lr=lr) | |
if self.use_scheduler: | |
assert 'target' in self.scheduler_config | |
scheduler = instantiate_from_config(self.scheduler_config) | |
print("Setting up LambdaLR scheduler...") | |
scheduler = [ | |
{ | |
'scheduler': LambdaLR(opt, lr_lambda=scheduler.schedule), | |
'interval': 'step', | |
'frequency': 1 | |
}] | |
return [opt], scheduler | |
return opt | |
def to_rgb(self, x): | |
x = x.float() | |
if not hasattr(self, "colorize"): | |
self.colorize = torch.randn(3, x.shape[1], 1, 1).to(x) | |
x = nn.functional.conv2d(x, weight=self.colorize) | |
x = 2. * (x - x.min()) / (x.max() - x.min()) - 1. | |
return x | |
class DiffusionWrapper(pl.LightningModule): | |
def __init__(self, diff_model_config, conditioning_key): | |
super().__init__() | |
self.diffusion_model = instantiate_from_config(diff_model_config) | |
self.conditioning_key = conditioning_key | |
assert self.conditioning_key in [None, 'concat', 'crossattn', 'hybrid', 'adm'] | |
def forward(self, x, t, c_concat: list = None, c_crossattn: list = None): | |
if self.conditioning_key is None: | |
out = self.diffusion_model(x, t) | |
elif self.conditioning_key == 'concat': | |
xc = torch.cat([x] + c_concat, dim=1) | |
out = self.diffusion_model(xc, t) | |
elif self.conditioning_key == 'crossattn': | |
cc = torch.cat(c_crossattn, 1) | |
out = self.diffusion_model(x, t, context=cc) | |
elif self.conditioning_key == 'hybrid': | |
xc = torch.cat([x] + c_concat, dim=1) | |
cc = torch.cat(c_crossattn, 1) | |
out = self.diffusion_model(xc, t, context=cc) | |
elif self.conditioning_key == 'adm': | |
cc = c_crossattn[0] | |
out = self.diffusion_model(x, t, y=cc) | |
else: | |
raise NotImplementedError | |
return out | |
class Layout2ImgDiffusion(LatentDiffusion): | |
def __init__(self, cond_stage_key, *args, **kwargs): | |
assert cond_stage_key == 'coordinates_bbox', 'Layout2ImgDiffusion only for cond_stage_key="coordinates_bbox"' | |
super().__init__(*args, cond_stage_key=cond_stage_key, **kwargs) | |
def log_images(self, batch, N=8, *args, **kwargs): | |
logs = super().log_images(*args, batch=batch, N=N, **kwargs) | |
key = 'train' if self.training else 'validation' | |
dset = self.trainer.datamodule.datasets[key] | |
mapper = dset.conditional_builders[self.cond_stage_key] | |
bbox_imgs = [] | |
map_fn = lambda catno: dset.get_textual_label(dset.get_category_id(catno)) | |
for tknzd_bbox in batch[self.cond_stage_key][:N]: | |
bboximg = mapper.plot(tknzd_bbox.detach().cpu(), map_fn, (256, 256)) | |
bbox_imgs.append(bboximg) | |
cond_img = torch.stack(bbox_imgs, dim=0) | |
logs['bbox_image'] = cond_img | |
return logs | |