test / modules /intel /ipex /attention.py
bilegentile's picture
Upload folder using huggingface_hub
c19ca42 verified
import os
import torch
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import
from functools import cache
# pylint: disable=protected-access, missing-function-docstring, line-too-long
# ARC GPUs can't allocate more than 4GB to a single block so we slice the attetion layers
sdpa_slice_trigger_rate = float(os.environ.get('IPEX_SDPA_SLICE_TRIGGER_RATE', 6))
attention_slice_rate = float(os.environ.get('IPEX_ATTENTION_SLICE_RATE', 4))
# Find something divisible with the input_tokens
@cache
def find_slice_size(slice_size, slice_block_size):
while (slice_size * slice_block_size) > attention_slice_rate:
slice_size = slice_size // 2
if slice_size <= 1:
slice_size = 1
break
return slice_size
# Find slice sizes for SDPA
@cache
def find_sdpa_slice_sizes(query_shape, query_element_size):
if len(query_shape) == 3:
batch_size_attention, query_tokens, shape_three = query_shape
shape_four = 1
else:
batch_size_attention, query_tokens, shape_three, shape_four = query_shape
slice_block_size = query_tokens * shape_three * shape_four / 1024 / 1024 * query_element_size
block_size = batch_size_attention * slice_block_size
split_slice_size = batch_size_attention
split_2_slice_size = query_tokens
split_3_slice_size = shape_three
do_split = False
do_split_2 = False
do_split_3 = False
if block_size > sdpa_slice_trigger_rate:
do_split = True
split_slice_size = find_slice_size(split_slice_size, slice_block_size)
if split_slice_size * slice_block_size > attention_slice_rate:
slice_2_block_size = split_slice_size * shape_three * shape_four / 1024 / 1024 * query_element_size
do_split_2 = True
split_2_slice_size = find_slice_size(split_2_slice_size, slice_2_block_size)
if split_2_slice_size * slice_2_block_size > attention_slice_rate:
slice_3_block_size = split_slice_size * split_2_slice_size * shape_four / 1024 / 1024 * query_element_size
do_split_3 = True
split_3_slice_size = find_slice_size(split_3_slice_size, slice_3_block_size)
return do_split, do_split_2, do_split_3, split_slice_size, split_2_slice_size, split_3_slice_size
# Find slice sizes for BMM
@cache
def find_bmm_slice_sizes(input_shape, input_element_size, mat2_shape):
batch_size_attention, input_tokens, mat2_atten_shape = input_shape[0], input_shape[1], mat2_shape[2]
slice_block_size = input_tokens * mat2_atten_shape / 1024 / 1024 * input_element_size
block_size = batch_size_attention * slice_block_size
split_slice_size = batch_size_attention
split_2_slice_size = input_tokens
split_3_slice_size = mat2_atten_shape
do_split = False
do_split_2 = False
do_split_3 = False
if block_size > attention_slice_rate:
do_split = True
split_slice_size = find_slice_size(split_slice_size, slice_block_size)
if split_slice_size * slice_block_size > attention_slice_rate:
slice_2_block_size = split_slice_size * mat2_atten_shape / 1024 / 1024 * input_element_size
do_split_2 = True
split_2_slice_size = find_slice_size(split_2_slice_size, slice_2_block_size)
if split_2_slice_size * slice_2_block_size > attention_slice_rate:
slice_3_block_size = split_slice_size * split_2_slice_size / 1024 / 1024 * input_element_size
do_split_3 = True
split_3_slice_size = find_slice_size(split_3_slice_size, slice_3_block_size)
return do_split, do_split_2, do_split_3, split_slice_size, split_2_slice_size, split_3_slice_size
original_torch_bmm = torch.bmm
def torch_bmm_32_bit(input, mat2, *, out=None):
if input.device.type != "xpu":
return original_torch_bmm(input, mat2, out=out)
do_split, do_split_2, do_split_3, split_slice_size, split_2_slice_size, split_3_slice_size = find_bmm_slice_sizes(input.shape, input.element_size(), mat2.shape)
# Slice BMM
if do_split:
batch_size_attention, input_tokens, mat2_atten_shape = input.shape[0], input.shape[1], mat2.shape[2]
hidden_states = torch.zeros(input.shape[0], input.shape[1], mat2.shape[2], device=input.device, dtype=input.dtype)
for i in range(batch_size_attention // split_slice_size):
start_idx = i * split_slice_size
end_idx = (i + 1) * split_slice_size
if do_split_2:
for i2 in range(input_tokens // split_2_slice_size): # pylint: disable=invalid-name
start_idx_2 = i2 * split_2_slice_size
end_idx_2 = (i2 + 1) * split_2_slice_size
if do_split_3:
for i3 in range(mat2_atten_shape // split_3_slice_size): # pylint: disable=invalid-name
start_idx_3 = i3 * split_3_slice_size
end_idx_3 = (i3 + 1) * split_3_slice_size
hidden_states[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3] = original_torch_bmm(
input[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3],
mat2[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3],
out=out
)
else:
hidden_states[start_idx:end_idx, start_idx_2:end_idx_2] = original_torch_bmm(
input[start_idx:end_idx, start_idx_2:end_idx_2],
mat2[start_idx:end_idx, start_idx_2:end_idx_2],
out=out
)
else:
hidden_states[start_idx:end_idx] = original_torch_bmm(
input[start_idx:end_idx],
mat2[start_idx:end_idx],
out=out
)
torch.xpu.synchronize(input.device)
else:
return original_torch_bmm(input, mat2, out=out)
return hidden_states
original_scaled_dot_product_attention = torch.nn.functional.scaled_dot_product_attention
def scaled_dot_product_attention_32_bit(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, **kwargs):
if query.device.type != "xpu":
return original_scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=dropout_p, is_causal=is_causal, **kwargs)
do_split, do_split_2, do_split_3, split_slice_size, split_2_slice_size, split_3_slice_size = find_sdpa_slice_sizes(query.shape, query.element_size())
# Slice SDPA
if do_split:
batch_size_attention, query_tokens, shape_three = query.shape[0], query.shape[1], query.shape[2]
hidden_states = torch.zeros(query.shape, device=query.device, dtype=query.dtype)
for i in range(batch_size_attention // split_slice_size):
start_idx = i * split_slice_size
end_idx = (i + 1) * split_slice_size
if do_split_2:
for i2 in range(query_tokens // split_2_slice_size): # pylint: disable=invalid-name
start_idx_2 = i2 * split_2_slice_size
end_idx_2 = (i2 + 1) * split_2_slice_size
if do_split_3:
for i3 in range(shape_three // split_3_slice_size): # pylint: disable=invalid-name
start_idx_3 = i3 * split_3_slice_size
end_idx_3 = (i3 + 1) * split_3_slice_size
hidden_states[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3] = original_scaled_dot_product_attention(
query[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3],
key[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3],
value[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3],
attn_mask=attn_mask[start_idx:end_idx, start_idx_2:end_idx_2, start_idx_3:end_idx_3] if attn_mask is not None else attn_mask,
dropout_p=dropout_p, is_causal=is_causal, **kwargs
)
else:
hidden_states[start_idx:end_idx, start_idx_2:end_idx_2] = original_scaled_dot_product_attention(
query[start_idx:end_idx, start_idx_2:end_idx_2],
key[start_idx:end_idx, start_idx_2:end_idx_2],
value[start_idx:end_idx, start_idx_2:end_idx_2],
attn_mask=attn_mask[start_idx:end_idx, start_idx_2:end_idx_2] if attn_mask is not None else attn_mask,
dropout_p=dropout_p, is_causal=is_causal, **kwargs
)
else:
hidden_states[start_idx:end_idx] = original_scaled_dot_product_attention(
query[start_idx:end_idx],
key[start_idx:end_idx],
value[start_idx:end_idx],
attn_mask=attn_mask[start_idx:end_idx] if attn_mask is not None else attn_mask,
dropout_p=dropout_p, is_causal=is_causal, **kwargs
)
torch.xpu.synchronize(query.device)
else:
return original_scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=dropout_p, is_causal=is_causal, **kwargs)
return hidden_states