Spaces:
Runtime error
Runtime error
import inspect | |
from typing import Union, Optional, Callable, List, Any | |
import numpy as np | |
import torch | |
import diffusers | |
from diffusers.pipelines.onnx_utils import ORT_TO_NP_TYPE | |
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput | |
from diffusers.image_processor import PipelineImageInput | |
from modules.onnx_impl.pipelines import CallablePipelineBase | |
from modules.onnx_impl.pipelines.utils import prepare_latents | |
class OnnxStableDiffusionInpaintPipeline(diffusers.OnnxStableDiffusionInpaintPipeline, CallablePipelineBase): | |
__module__ = 'diffusers' | |
__name__ = 'OnnxStableDiffusionInpaintPipeline' | |
def __init__( | |
self, | |
vae_encoder: diffusers.OnnxRuntimeModel, | |
vae_decoder: diffusers.OnnxRuntimeModel, | |
text_encoder: diffusers.OnnxRuntimeModel, | |
tokenizer: Any, | |
unet: diffusers.OnnxRuntimeModel, | |
scheduler: Any, | |
safety_checker: diffusers.OnnxRuntimeModel, | |
feature_extractor: Any, | |
requires_safety_checker: bool = True | |
): | |
super().__init__(vae_encoder, vae_decoder, text_encoder, tokenizer, unet, scheduler, safety_checker, feature_extractor, requires_safety_checker) | |
def __call__( | |
self, | |
prompt: Union[str, List[str]], | |
image: PipelineImageInput, | |
mask_image: PipelineImageInput, | |
masked_image_latents: torch.FloatTensor = None, | |
height: Optional[int] = 512, | |
width: Optional[int] = 512, | |
strength: float = 1.0, | |
num_inference_steps: int = 50, | |
guidance_scale: float = 7.5, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[np.ndarray] = None, | |
prompt_embeds: Optional[np.ndarray] = None, | |
negative_prompt_embeds: Optional[np.ndarray] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, np.ndarray], None]] = None, | |
callback_steps: int = 1, | |
): | |
# check inputs. Raise error if not correct | |
self.check_inputs( | |
prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds | |
) | |
# define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
if generator is None: | |
generator = torch.Generator("cpu") | |
# set timesteps | |
self.scheduler.set_timesteps(num_inference_steps) | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
prompt_embeds = self._encode_prompt( | |
prompt, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
) | |
num_channels_latents = diffusers.pipelines.stable_diffusion.pipeline_onnx_stable_diffusion_inpaint.NUM_LATENT_CHANNELS | |
latents = prepare_latents( | |
self.scheduler.init_noise_sigma, | |
batch_size * num_images_per_prompt, | |
height, | |
width, | |
prompt_embeds.dtype, | |
generator, | |
latents, | |
num_channels_latents, | |
) | |
scaling_factor = self.vae_decoder.config.get("scaling_factor", 0.18215) | |
# prepare mask and masked_image | |
mask, masked_image = diffusers.pipelines.stable_diffusion.pipeline_onnx_stable_diffusion_inpaint.prepare_mask_and_masked_image( | |
image[0], | |
mask_image, | |
(height // 8, width // 8), | |
) | |
mask = mask.astype(latents.dtype) | |
masked_image = masked_image.astype(latents.dtype) | |
masked_image_latents = self.vae_encoder(sample=masked_image)[0] | |
masked_image_latents = scaling_factor * masked_image_latents | |
# duplicate mask and masked_image_latents for each generation per prompt | |
mask = mask.repeat(batch_size * num_images_per_prompt, 0) | |
masked_image_latents = masked_image_latents.repeat(batch_size * num_images_per_prompt, 0) | |
mask = np.concatenate([mask] * 2) if do_classifier_free_guidance else mask | |
masked_image_latents = ( | |
np.concatenate([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents | |
) | |
num_channels_mask = mask.shape[1] | |
num_channels_masked_image = masked_image_latents.shape[1] | |
unet_input_channels = diffusers.pipelines.stable_diffusion.pipeline_onnx_stable_diffusion_inpaint.NUM_UNET_INPUT_CHANNELS | |
if num_channels_latents + num_channels_mask + num_channels_masked_image != unet_input_channels: | |
raise ValueError( | |
"Incorrect configuration settings! The config of `pipeline.unet` expects" | |
f" {unet_input_channels} but received `num_channels_latents`: {num_channels_latents} +" | |
f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}" | |
f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of" | |
" `pipeline.unet` or your `mask_image` or `image` input." | |
) | |
# set timesteps | |
self.scheduler.set_timesteps(num_inference_steps) | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (ฮท) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to ฮท in DDIM paper: https://arxiv.org/abs/2010.02502 | |
# and should be between [0, 1] | |
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
timestep_dtype = next( | |
(input.type for input in self.unet.model.get_inputs() if input.name == "timestep"), "tensor(float)" | |
) | |
timestep_dtype = ORT_TO_NP_TYPE[timestep_dtype] | |
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)): | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents | |
# concat latents, mask, masked_image_latnets in the channel dimension | |
latent_model_input = self.scheduler.scale_model_input(torch.from_numpy(latent_model_input), t) | |
latent_model_input = latent_model_input.cpu().numpy() | |
latent_model_input = np.concatenate([latent_model_input, mask, masked_image_latents], axis=1) | |
# predict the noise residual | |
timestep = np.array([t], dtype=timestep_dtype) | |
noise_pred = self.unet(sample=latent_model_input, timestep=timestep, encoder_hidden_states=prompt_embeds)[ | |
0 | |
] | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = np.split(noise_pred, 2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
# compute the previous noisy sample x_t -> x_t-1 | |
scheduler_output = self.scheduler.step( | |
torch.from_numpy(noise_pred), t, torch.from_numpy(latents), **extra_step_kwargs | |
) | |
latents = scheduler_output.prev_sample.numpy() | |
# call the callback, if provided | |
if callback is not None and i % callback_steps == 0: | |
step_idx = i // getattr(self.scheduler, "order", 1) | |
callback(step_idx, t, latents) | |
has_nsfw_concept = None | |
if output_type != "latent": | |
latents /= scaling_factor | |
# image = self.vae_decoder(latent_sample=latents)[0] | |
# it seems likes there is a strange result for using half-precision vae decoder if batchsize>1 | |
image = np.concatenate( | |
[self.vae_decoder(latent_sample=latents[i : i + 1])[0] for i in range(latents.shape[0])] | |
) | |
image = np.clip(image / 2 + 0.5, 0, 1) | |
image = image.transpose((0, 2, 3, 1)) | |
if self.safety_checker is not None: | |
safety_checker_input = self.feature_extractor( | |
self.numpy_to_pil(image), return_tensors="np" | |
).pixel_values.astype(image.dtype) | |
images, has_nsfw_concept = [], [] | |
for i in range(image.shape[0]): | |
image_i, has_nsfw_concept_i = self.safety_checker( | |
clip_input=safety_checker_input[i : i + 1], images=image[i : i + 1] | |
) | |
images.append(image_i) | |
has_nsfw_concept.append(has_nsfw_concept_i[0]) | |
image = np.concatenate(images) | |
if output_type == "pil": | |
image = self.numpy_to_pil(image) | |
else: | |
image = latents | |
if not return_dict: | |
return (image, has_nsfw_concept) | |
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) | |