Spaces:
Runtime error
Runtime error
from PIL import Image | |
import numpy as np | |
import torch | |
from rich.progress import Progress, TextColumn, BarColumn, TaskProgressColumn, TimeRemainingColumn, TimeElapsedColumn | |
from modules import devices | |
from modules.postprocess.scunet_model_arch import SCUNet as net | |
from modules.shared import opts, log, console | |
from modules.upscaler import Upscaler, compile_upscaler | |
class UpscalerSCUNet(Upscaler): | |
def __init__(self, dirname): | |
self.name = "SCUNet" | |
self.user_path = dirname | |
super().__init__() | |
self.scalers = self.find_scalers() | |
self.models = {} | |
def load_model(self, path: str): | |
info = self.find_model(path) | |
if info is None: | |
return | |
if self.models.get(info.local_data_path, None) is not None: | |
log.debug(f"Upscaler cached: type={self.name} model={info.local_data_path}") | |
model=self.models[info.local_data_path] | |
else: | |
model = net(in_nc=3, config=[4, 4, 4, 4, 4, 4, 4], dim=64) | |
model.load_state_dict(torch.load(info.local_data_path), strict=True) | |
model.eval() | |
log.info(f"Upscaler loaded: type={self.name} model={info.local_data_path}") | |
for _, v in model.named_parameters(): | |
v.requires_grad = False | |
model = model.to(devices.device) | |
model = compile_upscaler(model) | |
self.models[info.local_data_path] = model | |
return model | |
def tiled_inference(img, model): | |
# test the image tile by tile | |
h, w = img.shape[2:] | |
tile = opts.upscaler_tile_size | |
tile_overlap = opts.upscaler_tile_overlap | |
if tile == 0: | |
return model(img) | |
assert tile % 8 == 0, "tile size should be a multiple of window_size" | |
sf = 1 | |
stride = tile - tile_overlap | |
h_idx_list = list(range(0, h - tile, stride)) + [h - tile] | |
w_idx_list = list(range(0, w - tile, stride)) + [w - tile] | |
E = torch.zeros(1, 3, h * sf, w * sf, dtype=img.dtype, device=devices.device) | |
W = torch.zeros_like(E, dtype=devices.dtype, device=devices.device) | |
with Progress(TextColumn('[cyan]{task.description}'), BarColumn(), TaskProgressColumn(), TimeRemainingColumn(), TimeElapsedColumn(), console=console) as progress: | |
task = progress.add_task(description="Upscaling", total=len(h_idx_list) * len(w_idx_list)) | |
for h_idx in h_idx_list: | |
for w_idx in w_idx_list: | |
in_patch = img[..., h_idx: h_idx + tile, w_idx: w_idx + tile] | |
out_patch = model(in_patch) | |
out_patch_mask = torch.ones_like(out_patch) | |
E[ | |
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf | |
].add_(out_patch) | |
W[ | |
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf | |
].add_(out_patch_mask) | |
progress.update(task, advance=1, description="Upscaling") | |
output = E.div_(W) | |
return output | |
def do_upscale(self, img: Image.Image, selected_file): | |
devices.torch_gc() | |
model = self.load_model(selected_file) | |
if model is None: | |
return img | |
tile = opts.upscaler_tile_size | |
h, w = img.height, img.width | |
np_img = np.array(img) | |
np_img = np_img[:, :, ::-1] # RGB to BGR | |
np_img = np_img.transpose((2, 0, 1)) / 255 # HWC to CHW | |
torch_img = torch.from_numpy(np_img).float().unsqueeze(0).to(devices.device) # type: ignore | |
if tile > h or tile > w: | |
_img = torch.zeros(1, 3, max(h, tile), max(w, tile), dtype=torch_img.dtype, device=torch_img.device) | |
_img[:, :, :h, :w] = torch_img # pad image | |
torch_img = _img | |
torch_output = self.tiled_inference(torch_img, model).squeeze(0) | |
torch_output = torch_output[:, :h * 1, :w * 1] # remove padding, if any | |
np_output: np.ndarray = torch_output.float().cpu().clamp_(0, 1).numpy() | |
del torch_img, torch_output | |
devices.torch_gc() | |
output = np_output.transpose((1, 2, 0)) # CHW to HWC | |
output = output[:, :, ::-1] # BGR to RGB | |
img = Image.fromarray((output * 255).astype(np.uint8)) | |
if opts.upscaler_unload and selected_file in self.models: | |
del self.models[selected_file] | |
log.debug(f"Upscaler unloaded: type={self.name} model={selected_file}") | |
devices.torch_gc(force=True) | |
return img | |