test / modules /postprocess /scunet_model.py
bilegentile's picture
Upload folder using huggingface_hub
c19ca42 verified
from PIL import Image
import numpy as np
import torch
from rich.progress import Progress, TextColumn, BarColumn, TaskProgressColumn, TimeRemainingColumn, TimeElapsedColumn
from modules import devices
from modules.postprocess.scunet_model_arch import SCUNet as net
from modules.shared import opts, log, console
from modules.upscaler import Upscaler, compile_upscaler
class UpscalerSCUNet(Upscaler):
def __init__(self, dirname):
self.name = "SCUNet"
self.user_path = dirname
super().__init__()
self.scalers = self.find_scalers()
self.models = {}
def load_model(self, path: str):
info = self.find_model(path)
if info is None:
return
if self.models.get(info.local_data_path, None) is not None:
log.debug(f"Upscaler cached: type={self.name} model={info.local_data_path}")
model=self.models[info.local_data_path]
else:
model = net(in_nc=3, config=[4, 4, 4, 4, 4, 4, 4], dim=64)
model.load_state_dict(torch.load(info.local_data_path), strict=True)
model.eval()
log.info(f"Upscaler loaded: type={self.name} model={info.local_data_path}")
for _, v in model.named_parameters():
v.requires_grad = False
model = model.to(devices.device)
model = compile_upscaler(model)
self.models[info.local_data_path] = model
return model
@staticmethod
@torch.no_grad()
def tiled_inference(img, model):
# test the image tile by tile
h, w = img.shape[2:]
tile = opts.upscaler_tile_size
tile_overlap = opts.upscaler_tile_overlap
if tile == 0:
return model(img)
assert tile % 8 == 0, "tile size should be a multiple of window_size"
sf = 1
stride = tile - tile_overlap
h_idx_list = list(range(0, h - tile, stride)) + [h - tile]
w_idx_list = list(range(0, w - tile, stride)) + [w - tile]
E = torch.zeros(1, 3, h * sf, w * sf, dtype=img.dtype, device=devices.device)
W = torch.zeros_like(E, dtype=devices.dtype, device=devices.device)
with Progress(TextColumn('[cyan]{task.description}'), BarColumn(), TaskProgressColumn(), TimeRemainingColumn(), TimeElapsedColumn(), console=console) as progress:
task = progress.add_task(description="Upscaling", total=len(h_idx_list) * len(w_idx_list))
for h_idx in h_idx_list:
for w_idx in w_idx_list:
in_patch = img[..., h_idx: h_idx + tile, w_idx: w_idx + tile]
out_patch = model(in_patch)
out_patch_mask = torch.ones_like(out_patch)
E[
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
].add_(out_patch)
W[
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
].add_(out_patch_mask)
progress.update(task, advance=1, description="Upscaling")
output = E.div_(W)
return output
def do_upscale(self, img: Image.Image, selected_file):
devices.torch_gc()
model = self.load_model(selected_file)
if model is None:
return img
tile = opts.upscaler_tile_size
h, w = img.height, img.width
np_img = np.array(img)
np_img = np_img[:, :, ::-1] # RGB to BGR
np_img = np_img.transpose((2, 0, 1)) / 255 # HWC to CHW
torch_img = torch.from_numpy(np_img).float().unsqueeze(0).to(devices.device) # type: ignore
if tile > h or tile > w:
_img = torch.zeros(1, 3, max(h, tile), max(w, tile), dtype=torch_img.dtype, device=torch_img.device)
_img[:, :, :h, :w] = torch_img # pad image
torch_img = _img
torch_output = self.tiled_inference(torch_img, model).squeeze(0)
torch_output = torch_output[:, :h * 1, :w * 1] # remove padding, if any
np_output: np.ndarray = torch_output.float().cpu().clamp_(0, 1).numpy()
del torch_img, torch_output
devices.torch_gc()
output = np_output.transpose((1, 2, 0)) # CHW to HWC
output = output[:, :, ::-1] # BGR to RGB
img = Image.fromarray((output * 255).astype(np.uint8))
if opts.upscaler_unload and selected_file in self.models:
del self.models[selected_file]
log.debug(f"Upscaler unloaded: type={self.name} model={selected_file}")
devices.torch_gc(force=True)
return img