Spaces:
Runtime error
Runtime error
import torch | |
import diffusers | |
from PIL import Image | |
from modules import shared, devices | |
from modules.upscaler import Upscaler, UpscalerData | |
class UpscalerSD(Upscaler): | |
def __init__(self, dirname): # pylint: disable=super-init-not-called | |
self.name = "SDUpscale" | |
self.user_path = dirname | |
if shared.backend != shared.Backend.DIFFUSERS: | |
super().__init__() | |
return | |
self.scalers = [ | |
UpscalerData(name="SD Latent 2x", path="stabilityai/sd-x2-latent-upscaler", upscaler=self, model=None, scale=4), | |
UpscalerData(name="SD Latent 4x", path="stabilityai/stable-diffusion-x4-upscaler", upscaler=self, model=None, scale=4), | |
] | |
self.pipelines = [ | |
None, | |
None, | |
] | |
self.models = {} | |
def load_model(self, path: str): | |
from modules.sd_models import set_diffuser_options | |
scaler: UpscalerData = [x for x in self.scalers if x.data_path == path][0] | |
if self.models.get(path, None) is not None: | |
shared.log.debug(f"Upscaler cached: type={scaler.name} model={path}") | |
return self.models[path] | |
else: | |
devices.set_cuda_params() | |
model = diffusers.DiffusionPipeline.from_pretrained(path, cache_dir=shared.opts.diffusers_dir, torch_dtype=devices.dtype) | |
if hasattr(model, "set_progress_bar_config"): | |
model.set_progress_bar_config(bar_format='Progress {rate_fmt}{postfix} {bar} {percentage:3.0f}% {n_fmt}/{total_fmt} {elapsed} {remaining} ' + '\x1b[38;5;71m' + 'Upscale', ncols=80, colour='#327fba') | |
set_diffuser_options(scaler.model, vae=None, op='upscaler') | |
self.models[path] = model | |
return self.models[path] | |
def callback(self, _step: int, _timestep: int, _latents: torch.FloatTensor): | |
pass | |
def do_upscale(self, img: Image.Image, selected_model): | |
devices.torch_gc() | |
model = self.load_model(selected_model) | |
if model is None: | |
return img | |
seeds = [torch.randint(0, 2 ** 32, (1,)).item() for _ in range(1)] | |
generator_device = devices.cpu if shared.opts.diffusers_generator_device == "CPU" else devices.device | |
generator = [torch.Generator(generator_device).manual_seed(s) for s in seeds] | |
args = { | |
'prompt': '', | |
'negative_prompt': '', | |
'image': img, | |
'num_inference_steps': 20, | |
'guidance_scale': 7.5, | |
'generator': generator, | |
'latents': None, | |
'return_dict': True, | |
'callback': self.callback, | |
'callback_steps': 1, | |
# 'noise_level': 100, | |
# 'num_images_per_prompt': 1, | |
# 'eta': 0.0, | |
# 'cross_attention_kwargs': None, | |
} | |
model = model.to(devices.device) | |
output = model(**args) | |
image = output.images[0] | |
if shared.opts.upscaler_unload and selected_model in self.models: | |
del self.models[selected_model] | |
shared.log.debug(f"Upscaler unloaded: type={self.name} model={selected_model}") | |
devices.torch_gc(force=True) | |
return image | |