Spaces:
Runtime error
Runtime error
import math | |
import gradio as gr | |
import modules.scripts as scripts | |
from modules import deepbooru, images, processing, shared | |
from modules.processing import Processed | |
from modules.shared import opts, state | |
class Script(scripts.Script): | |
def title(self): | |
return "Loopback" | |
def show(self, is_img2img): | |
return is_img2img | |
def ui(self, is_img2img): | |
with gr.Row(): | |
gr.HTML("<span>  Loopback</span><br>") | |
with gr.Row(): | |
loops = gr.Slider(minimum=1, maximum=32, step=1, label='Loops', value=4, elem_id=self.elem_id("loops")) | |
final_denoising_strength = gr.Slider(minimum=0, maximum=1, step=0.01, label='Final denoising strength', value=0.5, elem_id=self.elem_id("final_denoising_strength")) | |
with gr.Row(): | |
denoising_curve = gr.Dropdown(label="Denoising strength curve", choices=["Aggressive", "Linear", "Lazy"], value="Linear") | |
append_interrogation = gr.Dropdown(label="Append interrogated prompt at each iteration", choices=["None", "CLIP", "DeepBooru"], value="None") | |
return [loops, final_denoising_strength, denoising_curve, append_interrogation] | |
def run(self, p, loops, final_denoising_strength, denoising_curve, append_interrogation): # pylint: disable=arguments-differ | |
processing.fix_seed(p) | |
batch_count = p.n_iter | |
p.extra_generation_params = { | |
"Final denoising strength": final_denoising_strength, | |
"Denoising curve": denoising_curve | |
} | |
p.batch_size = 1 | |
p.n_iter = 1 | |
info = None | |
initial_seed = None | |
initial_info = None | |
initial_denoising_strength = p.denoising_strength | |
grids = [] | |
all_images = [] | |
original_init_image = p.init_images | |
original_prompt = p.prompt | |
original_inpainting_fill = p.inpainting_fill | |
state.job_count = loops * batch_count | |
initial_color_corrections = [processing.setup_color_correction(p.init_images[0])] | |
def calculate_denoising_strength(loop): | |
strength = initial_denoising_strength | |
if loops == 1: | |
return strength | |
progress = loop / (loops - 1) | |
if denoising_curve == "Aggressive": | |
strength = math.sin((progress) * math.pi * 0.5) | |
elif denoising_curve == "Lazy": | |
strength = 1 - math.cos((progress) * math.pi * 0.5) | |
else: | |
strength = progress | |
change = (final_denoising_strength - initial_denoising_strength) * strength | |
return initial_denoising_strength + change | |
history = [] | |
for n in range(batch_count): | |
# Reset to original init image at the start of each batch | |
p.init_images = original_init_image | |
# Reset to original denoising strength | |
p.denoising_strength = initial_denoising_strength | |
last_image = None | |
for i in range(loops): | |
p.n_iter = 1 | |
p.batch_size = 1 | |
p.do_not_save_grid = True | |
if opts.img2img_color_correction: | |
p.color_corrections = initial_color_corrections | |
if append_interrogation != "None": | |
p.prompt = f"{original_prompt}, " if original_prompt else "" | |
if append_interrogation == "CLIP": | |
p.prompt += shared.interrogator.interrogate(p.init_images[0]) | |
elif append_interrogation == "DeepBooru": | |
p.prompt += deepbooru.model.tag(p.init_images[0]) | |
state.job = f"loopback iteration {i+1}/{loops} batch {n+1}/{batch_count}" | |
processed = processing.process_images(p) | |
# Generation cancelled. | |
if state.interrupted: | |
break | |
if initial_seed is None: | |
initial_seed = processed.seed | |
initial_info = processed.info | |
p.seed = processed.seed + 1 | |
p.denoising_strength = calculate_denoising_strength(i + 1) | |
if state.skipped: | |
break | |
last_image = processed.images[0] | |
p.init_images = [last_image] | |
p.inpainting_fill = 1 # Set "masked content" to "original" for next loop. | |
if batch_count == 1: | |
history.append(last_image) | |
all_images.append(last_image) | |
if batch_count > 1 and not state.skipped and not state.interrupted: | |
history.append(last_image) | |
all_images.append(last_image) | |
p.inpainting_fill = original_inpainting_fill | |
if state.interrupted: | |
break | |
if len(history) > 1: | |
grid = images.image_grid(history, rows=1) | |
if opts.grid_save: | |
images.save_image(grid, p.outpath_grids, "grid", initial_seed, p.prompt, opts.grid_format, info=info, grid=True, p=p) | |
if opts.return_grid: | |
grids.append(grid) | |
all_images = grids + all_images | |
processed = Processed(p, all_images, initial_seed, initial_info) | |
return processed | |