import os import gc import sys import time import contextlib import torch from modules.errors import log from modules import cmd_args, shared, memstats, errors if sys.platform == "darwin": from modules import mac_specific # pylint: disable=ungrouped-imports previous_oom = 0 backup_sdpa = None debug = os.environ.get('SD_DEVICE_DEBUG', None) is not None def has_mps() -> bool: if sys.platform != "darwin": return False else: return mac_specific.has_mps # pylint: disable=used-before-assignment def get_gpu_info(): def get_driver(): import subprocess if torch.cuda.is_available() and torch.version.cuda: try: result = subprocess.run('nvidia-smi --query-gpu=driver_version --format=csv,noheader', shell=True, check=False, env=os.environ, stdout=subprocess.PIPE, stderr=subprocess.PIPE) version = result.stdout.decode(encoding="utf8", errors="ignore").strip() return version except Exception: return '' else: return '' def get_package_version(pkg: str): import pkg_resources spec = pkg_resources.working_set.by_key.get(pkg, None) # more reliable than importlib version = pkg_resources.get_distribution(pkg).version if spec is not None else '' return version if not torch.cuda.is_available(): try: if shared.cmd_opts.use_openvino: return { 'device': get_openvino_device(), 'openvino': get_package_version("openvino"), } elif shared.cmd_opts.use_directml: return { 'device': f'{torch.cuda.get_device_name(torch.cuda.current_device())} n={torch.cuda.device_count()}', 'directml': get_package_version("torch-directml"), } else: return {} except Exception: return {} else: try: if hasattr(torch, "xpu") and torch.xpu.is_available(): return { 'device': f'{torch.xpu.get_device_name(torch.xpu.current_device())} n={torch.xpu.device_count()}', 'ipex': get_package_version('intel-extension-for-pytorch'), } elif torch.version.cuda: return { 'device': f'{torch.cuda.get_device_name(torch.cuda.current_device())} n={torch.cuda.device_count()} arch={torch.cuda.get_arch_list()[-1]} cap={torch.cuda.get_device_capability(device)}', 'cuda': torch.version.cuda, 'cudnn': torch.backends.cudnn.version(), 'driver': get_driver(), } elif torch.version.hip: return { 'device': f'{torch.cuda.get_device_name(torch.cuda.current_device())} n={torch.cuda.device_count()}', 'hip': torch.version.hip, } else: return { 'device': 'unknown' } except Exception as ex: if debug: errors.display(ex, 'Device exception') return { 'error': ex } def extract_device_id(args, name): # pylint: disable=redefined-outer-name for x in range(len(args)): if name in args[x]: return args[x + 1] return None def get_cuda_device_string(): if backend == 'ipex': if shared.cmd_opts.device_id is not None: return f"xpu:{shared.cmd_opts.device_id}" return "xpu" elif backend == 'directml' and torch.dml.is_available(): if shared.cmd_opts.device_id is not None: return f"privateuseone:{shared.cmd_opts.device_id}" return torch.dml.get_device_string(torch.dml.default_device().index) else: if shared.cmd_opts.device_id is not None: return f"cuda:{shared.cmd_opts.device_id}" return "cuda" def get_optimal_device_name(): if cuda_ok or backend == 'directml': return get_cuda_device_string() if has_mps() and backend != 'openvino': return "mps" return "cpu" def get_optimal_device(): return torch.device(get_optimal_device_name()) def get_device_for(task): if task in shared.cmd_opts.use_cpu: log.debug(f'Forcing CPU for task: {task}') return cpu return get_optimal_device() def torch_gc(force=False): t0 = time.time() mem = memstats.memory_stats() gpu = mem.get('gpu', {}) ram = mem.get('ram', {}) oom = gpu.get('oom', 0) if backend == "directml": used_gpu = round(100 * torch.cuda.memory_allocated() / (1 << 30) / gpu.get('total', 1)) if gpu.get('total', 1) > 1 else 0 else: used_gpu = round(100 * gpu.get('used', 0) / gpu.get('total', 1)) if gpu.get('total', 1) > 1 else 0 used_ram = round(100 * ram.get('used', 0) / ram.get('total', 1)) if ram.get('total', 1) > 1 else 0 global previous_oom # pylint: disable=global-statement if oom > previous_oom: previous_oom = oom log.warning(f'GPU out-of-memory error: {mem}') force = True if used_gpu >= shared.opts.torch_gc_threshold or used_ram >= shared.opts.torch_gc_threshold: log.info(f'High memory utilization: GPU={used_gpu}% RAM={used_ram}% {mem}') force = True if not force: return # actual gc collected = gc.collect() # python gc if cuda_ok: try: with torch.cuda.device(get_cuda_device_string()): torch.cuda.empty_cache() # cuda gc torch.cuda.ipc_collect() except Exception: pass t1 = time.time() log.debug(f'GC: collected={collected} device={torch.device(get_optimal_device_name())} {memstats.memory_stats()} time={round(t1 - t0, 2)}') def set_cuda_sync_mode(mode): """ Set the CUDA device synchronization mode: auto, spin, yield or block. auto: Chooses spin or yield depending on the number of available CPU cores. spin: Runs one CPU core per GPU at 100% to poll for completed operations. yield: Gives control to other threads between polling, if any are waiting. block: Lets the thread sleep until the GPU driver signals completion. """ if mode == -1 or mode == 'none' or not cuda_ok: return try: import ctypes log.info(f'Set cuda synch: mode={mode}') torch.cuda.set_device(torch.device(get_optimal_device_name())) ctypes.CDLL('libcudart.so').cudaSetDeviceFlags({'auto': 0, 'spin': 1, 'yield': 2, 'block': 4}[mode]) except Exception: pass def test_fp16(): if shared.cmd_opts.experimental: return True try: x = torch.tensor([[1.5,.0,.0,.0]]).to(device=device, dtype=torch.float16) layerNorm = torch.nn.LayerNorm(4, eps=0.00001, elementwise_affine=True, dtype=torch.float16, device=device) _y = layerNorm(x) return True except Exception as ex: log.warning(f'Torch FP16 test failed: Forcing FP32 operations: {ex}') shared.opts.cuda_dtype = 'FP32' shared.opts.no_half = True shared.opts.no_half_vae = True return False def test_bf16(): if shared.cmd_opts.experimental: return True try: import torch.nn.functional as F image = torch.randn(1, 4, 32, 32).to(device=device, dtype=torch.bfloat16) _out = F.interpolate(image, size=(64, 64), mode="nearest") return True except Exception: log.warning('Torch BF16 test failed: Fallback to FP16 operations') return False def set_cuda_params(): # log.debug('Verifying Torch settings') if cuda_ok: try: torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = True torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = True except Exception: pass if torch.backends.cudnn.is_available(): try: torch.backends.cudnn.deterministic = shared.opts.cudnn_deterministic torch.backends.cudnn.benchmark = True if shared.opts.cudnn_benchmark: log.debug('Torch enable cuDNN benchmark') torch.backends.cudnn.benchmark_limit = 0 torch.backends.cudnn.allow_tf32 = True except Exception: pass try: if shared.opts.cross_attention_optimization == "Scaled-Dot-Product" or shared.opts.cross_attention_optimization == "Dynamic Attention SDP": torch.backends.cuda.enable_flash_sdp('Flash attention' in shared.opts.sdp_options) torch.backends.cuda.enable_mem_efficient_sdp('Memory attention' in shared.opts.sdp_options) torch.backends.cuda.enable_math_sdp('Math attention' in shared.opts.sdp_options) if backend == "rocm": global backup_sdpa # pylint: disable=global-statement if 'Flash attention' in shared.opts.sdp_options: try: # https://github.com/huggingface/diffusers/discussions/7172 from flash_attn import flash_attn_func if backup_sdpa is None: backup_sdpa = torch.nn.functional.scaled_dot_product_attention def sdpa_hijack(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, scale=None): if query.shape[3] <= 128 and attn_mask is None: return flash_attn_func(q=query.transpose(1, 2), k=key.transpose(1, 2), v=value.transpose(1, 2), dropout_p=dropout_p, causal=is_causal, softmax_scale=scale).transpose(1, 2) else: return backup_sdpa(query=query, key=key, value=value, attn_mask=attn_mask, dropout_p=dropout_p, is_causal=is_causal, scale=scale) torch.nn.functional.scaled_dot_product_attention = sdpa_hijack shared.log.debug('ROCm Flash Attention Hijacked') except Exception as err: log.error(f'ROCm Flash Attention failed: {err}') elif backup_sdpa is not None: # Restore original SDPA torch.nn.functional.scaled_dot_product_attention = backup_sdpa except Exception: pass if shared.cmd_opts.profile: shared.log.debug(f'Torch info: {torch.__config__.show()}') global dtype, dtype_vae, dtype_unet, unet_needs_upcast, inference_context # pylint: disable=global-statement if shared.opts.cuda_dtype == 'FP32': dtype = torch.float32 dtype_vae = torch.float32 dtype_unet = torch.float32 fp16_ok = None bf16_ok = None elif shared.opts.cuda_dtype == 'BF16' or dtype == torch.bfloat16: fp16_ok = test_fp16() bf16_ok = test_bf16() dtype = torch.bfloat16 if bf16_ok else torch.float16 dtype_vae = torch.bfloat16 if bf16_ok else torch.float16 dtype_unet = torch.bfloat16 if bf16_ok else torch.float16 elif shared.opts.cuda_dtype == 'FP16' or dtype == torch.float16: fp16_ok = test_fp16() bf16_ok = None dtype = torch.float16 if fp16_ok else torch.float32 dtype_vae = torch.float16 if fp16_ok else torch.float32 dtype_unet = torch.float16 if fp16_ok else torch.float32 if shared.opts.no_half: log.info('Torch override dtype: no-half set') dtype = torch.float32 dtype_vae = torch.float32 dtype_unet = torch.float32 if shared.opts.no_half_vae: # set dtype again as no-half-vae options take priority log.info('Torch override VAE dtype: no-half set') dtype_vae = torch.float32 unet_needs_upcast = shared.opts.upcast_sampling if shared.opts.inference_mode == 'inference-mode': inference_context = torch.inference_mode elif shared.opts.inference_mode == 'none': inference_context = contextlib.nullcontext else: inference_context = torch.no_grad log_device_name = get_raw_openvino_device() if shared.cmd_opts.use_openvino else torch.device(get_optimal_device_name()) log.debug(f'Desired Torch parameters: dtype={shared.opts.cuda_dtype} no-half={shared.opts.no_half} no-half-vae={shared.opts.no_half_vae} upscast={shared.opts.upcast_sampling}') log.info(f'Setting Torch parameters: device={log_device_name} dtype={dtype} vae={dtype_vae} unet={dtype_unet} context={inference_context.__name__} fp16={fp16_ok} bf16={bf16_ok} optimization={shared.opts.cross_attention_optimization}') args = cmd_args.parser.parse_args() backend = 'not set' if args.use_openvino: from modules.intel.openvino import get_openvino_device from modules.intel.openvino import get_device as get_raw_openvino_device backend = 'openvino' if hasattr(torch, 'xpu') and torch.xpu.is_available(): torch.xpu.is_available = lambda *args, **kwargs: False torch.cuda.is_available = lambda *args, **kwargs: False elif args.use_ipex or (hasattr(torch, 'xpu') and torch.xpu.is_available()): backend = 'ipex' from modules.intel.ipex import ipex_init ok, e = ipex_init() if not ok: log.error(f'IPEX initialization failed: {e}') backend = 'cpu' elif args.use_directml: backend = 'directml' from modules.dml import directml_init ok, e = directml_init() if not ok: log.error(f'DirectML initialization failed: {e}') backend = 'cpu' elif torch.cuda.is_available() and torch.version.cuda: backend = 'cuda' elif torch.cuda.is_available() and torch.version.hip: backend = 'rocm' elif sys.platform == 'darwin': backend = 'mps' else: backend = 'cpu' inference_context = torch.no_grad cuda_ok = torch.cuda.is_available() cpu = torch.device("cpu") device = device_interrogate = device_gfpgan = device_esrgan = device_codeformer = None dtype = torch.float16 dtype_vae = torch.float16 dtype_unet = torch.float16 unet_needs_upcast = False onnx = None if args.profile: log.info(f'Torch build config: {torch.__config__.show()}') # set_cuda_sync_mode('block') # none/auto/spin/yield/block def cond_cast_unet(tensor): return tensor.to(dtype_unet) if unet_needs_upcast else tensor def cond_cast_float(tensor): return tensor.float() if unet_needs_upcast else tensor def randn(seed, shape): torch.manual_seed(seed) if backend == 'ipex': torch.xpu.manual_seed_all(seed) if device.type == 'mps': return torch.randn(shape, device=cpu).to(device) return torch.randn(shape, device=device) def randn_without_seed(shape): if device.type == 'mps': return torch.randn(shape, device=cpu).to(device) return torch.randn(shape, device=device) def autocast(disable=False): if disable: return contextlib.nullcontext() if dtype == torch.float32 or shared.cmd_opts.precision == "Full": return contextlib.nullcontext() if shared.cmd_opts.use_directml: return torch.dml.amp.autocast(dtype) if cuda_ok: return torch.autocast("cuda") else: return torch.autocast("cpu") def without_autocast(disable=False): if disable: return contextlib.nullcontext() if shared.cmd_opts.use_directml: return torch.dml.amp.autocast(enabled=False) if torch.is_autocast_enabled() else contextlib.nullcontext() # pylint: disable=unexpected-keyword-arg if cuda_ok: return torch.autocast("cuda", enabled=False) if torch.is_autocast_enabled() else contextlib.nullcontext() else: return torch.autocast("cpu", enabled=False) if torch.is_autocast_enabled() else contextlib.nullcontext() class NansException(Exception): pass def test_for_nans(x, where): if shared.opts.disable_nan_check: return if not torch.all(torch.isnan(x)).item(): return if where == "unet": message = "A tensor with all NaNs was produced in Unet." if not shared.opts.no_half: message += " This could be either because there's not enough precision to represent the picture, or because your video card does not support half type. Try setting the \"Upcast cross attention layer to float32\" option in Settings > Stable Diffusion or using the --no-half commandline argument to fix this." elif where == "vae": message = "A tensor with all NaNs was produced in VAE." if not shared.opts.no_half and not shared.opts.no_half_vae: message += " This could be because there's not enough precision to represent the picture. Try adding --no-half-vae commandline argument to fix this." else: message = "A tensor with all NaNs was produced." message += " Use --disable-nan-check commandline argument to disable this check." raise NansException(message)