import os from urllib.parse import urlparse import cv2 import torch import numpy as np from torch.hub import download_url_to_file, get_dir from PIL import Image from modules import devices from modules.shared import log LAMA_MODEL_URL = "https://github.com/enesmsahin/simple-lama-inpainting/releases/download/v0.1.0/big-lama.pt" def prepare_img_and_mask(image, mask, device, pad_out_to_modulo=8, scale_factor=None): def ceil_modulo(x, mod): if x % mod == 0: return x return (x // mod + 1) * mod def get_image(img): if isinstance(img, Image.Image): img = np.array(img) if img.ndim == 3: img = np.transpose(img, (2, 0, 1)) # chw elif img.ndim == 2: img = img[np.newaxis, ...] img = img.astype(np.float32) / 255 return img def pad_img_to_modulo(img, mod): _channels, height, width = img.shape out_height = ceil_modulo(height, mod) out_width = ceil_modulo(width, mod) return np.pad( img, ((0, 0), (0, out_height - height), (0, out_width - width)), mode="symmetric", ) def scale_image(img, factor, interpolation=cv2.INTER_AREA): if img.shape[0] == 1: img = img[0] else: img = np.transpose(img, (1, 2, 0)) img = cv2.resize(img, dsize=None, fx=factor, fy=factor, interpolation=interpolation) if img.ndim == 2: img = img[None, ...] else: img = np.transpose(img, (2, 0, 1)) return img out_image = get_image(image) out_mask = get_image(mask) if scale_factor is not None: out_image = scale_image(out_image, scale_factor) out_mask = scale_image(out_mask, scale_factor, interpolation=cv2.INTER_NEAREST) if pad_out_to_modulo is not None and pad_out_to_modulo > 1: out_image = pad_img_to_modulo(out_image, pad_out_to_modulo) out_mask = pad_img_to_modulo(out_mask, pad_out_to_modulo) out_image = torch.from_numpy(out_image).unsqueeze(0).to(device) out_mask = torch.from_numpy(out_mask).unsqueeze(0).to(device) out_mask = (out_mask > 0) * 1 return out_image, out_mask def download_model(): parts = urlparse(LAMA_MODEL_URL) hub_dir = get_dir() model_dir = os.path.join(hub_dir, "checkpoints") os.makedirs(os.path.join(model_dir, "hub", "checkpoints"), exist_ok=True) filename = os.path.basename(parts.path) cached_file = os.path.join(model_dir, filename) if not os.path.exists(cached_file): log.info(f'LaMa download: url={LAMA_MODEL_URL} file={cached_file}') hash_prefix = None download_url_to_file(LAMA_MODEL_URL, cached_file, hash_prefix, progress=True) return cached_file class SimpleLama: def __init__(self): self.device = devices.device model_path = download_model() self.model = torch.jit.load(model_path, map_location=self.device) self.model.eval() self.model.to(self.device) def __call__(self, image: Image.Image | np.ndarray, mask: Image.Image | np.ndarray): if image is None: log.warning('LaMa: image is none') return None if mask is None: mask = Image.new('L', image.size, 0) return None image, mask = prepare_img_and_mask(image, mask, self.device) with devices.inference_context(): inpainted = self.model(image, mask) cur_res = inpainted[0].permute(1, 2, 0).detach().float().cpu().numpy() cur_res = np.clip(cur_res * 255, 0, 255).astype(np.uint8) cur_res = Image.fromarray(cur_res) return cur_res