#!/usr/bin/env python # pylint: disable=no-member import os import re import json import time import logging import importlib import asyncio import argparse from pathlib import Path from util import Map, log from sdapi import get, post, close from generate import generate # pylint: disable=import-error grid = importlib.import_module('image-grid').grid options = Map({ # used by extra networks 'prompt': 'photo of , photograph, posing, pose, high detailed, intricate, elegant, sharp focus, skin texture, looking forward, facing camera, 135mm, shot on dslr, canon 5d, 4k, modelshoot style, cinematic lighting', # used by models 'prompts': [ ('photo citiscape', 'cityscape during night, photorealistic, high detailed, sharp focus, depth of field, 4k'), ('photo car', 'photo of a sports car, high detailed, sharp focus, dslr, cinematic lighting, realistic'), ('photo woman', 'portrait photo of beautiful woman, high detailed, dslr, 35mm'), ('photo naked', 'full body photo of beautiful sexy naked woman, high detailed, dslr, 35mm'), ('photo taylor', 'portrait photo of beautiful woman taylor swift, high detailed, sharp focus, depth of field, dslr, 35mm '), ('photo ti-mia', 'portrait photo of beautiful woman "ti-mia", naked, high detailed, dslr, 35mm'), ('photo ti-vlado', 'portrait photo of man "ti-vlado", high detailed, dslr, 35mm'), ('photo lora-vlado', 'portrait photo of man vlado, high detailed, dslr, 35mm '), ('wlop', 'a stunning portrait of sexy teen girl in a wet t-shirt, vivid color palette, digital painting, octane render, highly detailed, particles, light effect, volumetric lighting, art by wlop'), ('greg rutkowski', 'beautiful woman, high detailed, sharp focus, depth of field, 4k, art by greg rutkowski'), ('carne griffiths', 'beautiful woman taylor swift, high detailed, sharp focus, depth of field, art by carne griffiths '), ('carne griffiths', 'man vlado, high detailed, sharp focus, depth of field, art by carne griffiths '), ], # save format 'format': '.jpg', # used by generate script 'paths': { "root": "/mnt/c/Users/mandi/OneDrive/Generative/Generate", "generate": "image", "upscale": "upscale", "grid": "grid", }, # generate params 'generate': { 'restore_faces': True, 'prompt': '', 'negative_prompt': 'foggy, blurry, blurred, duplicate, ugly, mutilated, mutation, mutated, out of frame, bad anatomy, disfigured, deformed, censored, low res, low resolution, watermark, text, poorly drawn face, poorly drawn hands, signature', 'steps': 20, 'batch_size': 2, 'n_iter': 1, 'seed': -1, 'sampler_name': 'UniPC', 'cfg_scale': 6, 'width': 512, 'height': 512, }, 'lora': { 'strength': 1.0, }, 'hypernetwork': { 'keyword': '', 'strength': 1.0, }, }) def preview_exists(folder, model): model = os.path.splitext(model)[0] for suffix in ['', '.preview']: for ext in ['.jpg', '.png', '.webp']: fn = os.path.join(folder, f'{model}{suffix}{ext}') if os.path.exists(fn): return True return False async def preview_models(params): data = await get('/sdapi/v1/sd-models') allmodels = [m['title'] for m in data] models = [] excluded = [] for m in allmodels: # loop through all registered models ok = True for e in params.exclude: # check if model is excluded if e in m: excluded.append(m) ok = False break if ok: short = m.split(' [')[0] short = short.replace('.ckpt', '').replace('.safetensors', '') models.append(short) if len(params.input) > 0: # check if model is included in cmd line filtered = [] for m in params.input: if m in models: filtered.append(m) else: log.error({ 'model not found': m }) return models = filtered log.info({ 'models preview' }) log.info({ 'models': len(models), 'excluded': len(excluded) }) opt = await get('/sdapi/v1/options') log.info({ 'total jobs': len(models) * options.generate.batch_size, 'per-model': options.generate.batch_size }) log.info(json.dumps(options, indent=2)) for model in models: if preview_exists(opt['ckpt_dir'], model) and len(params.input) == 0: # if model preview exists and not manually included log.info({ 'model preview exists': model }) continue fn = os.path.join(opt['ckpt_dir'], os.path.splitext(model)[0] + options.format) log.info({ 'model load': model }) opt['sd_model_checkpoint'] = model del opt['sd_lora'] del opt['sd_lyco'] await post('/sdapi/v1/options', opt) opt = await get('/sdapi/v1/options') images = [] labels = [] t0 = time.time() for label, p in options.prompts: options.generate.prompt = p log.info({ 'model generating': model, 'label': label, 'prompt': options.generate.prompt }) data = await generate(options = options, quiet=True) if 'image' in data: for img in data['image']: images.append(img) labels.append(label) else: log.error({ 'model': model, 'error': data }) t1 = time.time() if len(images) == 0: log.error({ 'model': model, 'error': 'no images generated' }) continue image = grid(images = images, labels = labels, border = 8) log.info({ 'saving preview': fn, 'images': len(images), 'size': [image.width, image.height] }) image.save(fn) t = t1 - t0 its = 1.0 * options.generate.steps * len(images) / t log.info({ 'model preview created': model, 'image': fn, 'images': len(images), 'grid': [image.width, image.height], 'time': round(t, 2), 'its': round(its, 2) }) opt = await get('/sdapi/v1/options') if opt['sd_model_checkpoint'] != params.model: log.info({ 'model set default': params.model }) opt['sd_model_checkpoint'] = params.model del opt['sd_lora'] del opt['sd_lyco'] await post('/sdapi/v1/options', opt) async def lora(params): opt = await get('/sdapi/v1/options') folder = opt['lora_dir'] if not os.path.exists(folder): log.error({ 'lora directory not found': folder }) return models1 = list(Path(folder).glob('**/*.safetensors')) models2 = list(Path(folder).glob('**/*.ckpt')) models = [os.path.splitext(f)[0] for f in models1 + models2] log.info({ 'loras': len(models) }) for model in models: if preview_exists('', model) and len(params.input) == 0: # if model preview exists and not manually included log.info({ 'lora preview exists': model }) continue fn = model + options.format model = os.path.basename(model) images = [] labels = [] t0 = time.time() keywords = re.sub(r'\d', '', model) keywords = keywords.replace('-v', ' ').replace('-', ' ').strip().split(' ') keyword = '\"' + '\" \"'.join(keywords) + '\"' options.generate.prompt = options.prompt.replace('', keyword) options.generate.prompt = options.generate.prompt.replace('', '') options.generate.prompt += f' ' log.info({ 'lora generating': model, 'keyword': keyword, 'prompt': options.generate.prompt }) data = await generate(options = options, quiet=True) if 'image' in data: for img in data['image']: images.append(img) labels.append(keyword) else: log.error({ 'lora': model, 'keyword': keyword, 'error': data }) t1 = time.time() if len(images) == 0: log.error({ 'model': model, 'error': 'no images generated' }) continue image = grid(images = images, labels = labels, border = 8) log.info({ 'saving preview': fn, 'images': len(images), 'size': [image.width, image.height] }) image.save(fn) t = t1 - t0 its = 1.0 * options.generate.steps * len(images) / t log.info({ 'lora preview created': model, 'image': fn, 'images': len(images), 'grid': [image.width, image.height], 'time': round(t, 2), 'its': round(its, 2) }) async def lyco(params): opt = await get('/sdapi/v1/options') folder = opt['lyco_dir'] if not os.path.exists(folder): log.error({ 'lyco directory not found': folder }) return models1 = list(Path(folder).glob('**/*.safetensors')) models2 = list(Path(folder).glob('**/*.ckpt')) models = [os.path.splitext(f)[0] for f in models1 + models2] log.info({ 'lycos': len(models) }) for model in models: if preview_exists('', model) and len(params.input) == 0: # if model preview exists and not manually included log.info({ 'lyco preview exists': model }) continue fn = model + options.format model = os.path.basename(model) images = [] labels = [] t0 = time.time() keywords = re.sub(r'\d', '', model) keywords = keywords.replace('-v', ' ').replace('-', ' ').strip().split(' ') keyword = '\"' + '\" \"'.join(keywords) + '\"' options.generate.prompt = options.prompt.replace('', keyword) options.generate.prompt = options.generate.prompt.replace('', '') options.generate.prompt += f' ' log.info({ 'lyco generating': model, 'keyword': keyword, 'prompt': options.generate.prompt }) data = await generate(options = options, quiet=True) if 'image' in data: for img in data['image']: images.append(img) labels.append(keyword) else: log.error({ 'lyco': model, 'keyword': keyword, 'error': data }) t1 = time.time() if len(images) == 0: log.error({ 'model': model, 'error': 'no images generated' }) continue image = grid(images = images, labels = labels, border = 8) log.info({ 'saving preview': fn, 'images': len(images), 'size': [image.width, image.height] }) image.save(fn) t = t1 - t0 its = 1.0 * options.generate.steps * len(images) / t log.info({ 'lyco preview created': model, 'image': fn, 'images': len(images), 'grid': [image.width, image.height], 'time': round(t, 2), 'its': round(its, 2) }) async def hypernetwork(params): opt = await get('/sdapi/v1/options') folder = opt['hypernetwork_dir'] if not os.path.exists(folder): log.error({ 'hypernetwork directory not found': folder }) return models = [os.path.splitext(f)[0] for f in Path(folder).glob('**/*.pt')] log.info({ 'hypernetworks': len(models) }) for model in models: if preview_exists(folder, model) and len(params.input) == 0: # if model preview exists and not manually included log.info({ 'hypernetwork preview exists': model }) continue fn = os.path.join(folder, model + options.format) images = [] labels = [] t0 = time.time() keyword = options.hypernetwork.keyword options.generate.prompt = options.prompt.replace('', options.hypernetwork.keyword) options.generate.prompt = options.generate.prompt.replace('', '') options.generate.prompt = f' ' + options.generate.prompt log.info({ 'hypernetwork generating': model, 'keyword': keyword, 'prompt': options.generate.prompt }) data = await generate(options = options, quiet=True) if 'image' in data: for img in data['image']: images.append(img) labels.append(keyword) else: log.error({ 'hypernetwork': model, 'keyword': keyword, 'error': data }) t1 = time.time() if len(images) == 0: log.error({ 'model': model, 'error': 'no images generated' }) continue image = grid(images = images, labels = labels, border = 8) log.info({ 'saving preview': fn, 'images': len(images), 'size': [image.width, image.height] }) image.save(fn) t = t1 - t0 its = 1.0 * options.generate.steps * len(images) / t log.info({ 'hypernetwork preview created': model, 'image': fn, 'images': len(images), 'grid': [image.width, image.height], 'time': round(t, 2), 'its': round(its, 2) }) async def embedding(params): opt = await get('/sdapi/v1/options') folder = opt['embeddings_dir'] if not os.path.exists(folder): log.error({ 'embeddings directory not found': folder }) return models = [os.path.splitext(f)[0] for f in Path(folder).glob('**/*.pt')] log.info({ 'embeddings': len(models) }) for model in models: if preview_exists(folder, model) and len(params.input) == 0: # if model preview exists and not manually included log.info({ 'embedding preview exists': model }) continue fn = os.path.join(folder, model + '.preview' + options.format) images = [] labels = [] t0 = time.time() keyword = '\"' + re.sub(r'\d', '', model) + '\"' options.generate.batch_size = 4 options.generate.prompt = options.prompt.replace('', keyword) options.generate.prompt = options.generate.prompt.replace('', '') log.info({ 'embedding generating': model, 'keyword': keyword, 'prompt': options.generate.prompt }) data = await generate(options = options, quiet=True) if 'image' in data: for img in data['image']: images.append(img) labels.append(keyword) else: log.error({ 'embeding': model, 'keyword': keyword, 'error': data }) t1 = time.time() if len(images) == 0: log.error({ 'model': model, 'error': 'no images generated' }) continue image = grid(images = images, labels = labels, border = 8) log.info({ 'saving preview': fn, 'images': len(images), 'size': [image.width, image.height] }) image.save(fn) t = t1 - t0 its = 1.0 * options.generate.steps * len(images) / t log.info({ 'embeding preview created': model, 'image': fn, 'images': len(images), 'grid': [image.width, image.height], 'time': round(t, 2), 'its': round(its, 2) }) async def create_previews(params): await preview_models(params) await lora(params) await lyco(params) await hypernetwork(params) await embedding(params) await close() if __name__ == '__main__': parser = argparse.ArgumentParser(description = 'generate model previews') parser.add_argument('--model', default='best/icbinp-icantbelieveIts-final.safetensors [73f48afbdc]', help="model used to create extra network previews") parser.add_argument('--exclude', default=['sd-v20', 'sd-v21', 'inpainting', 'pix2pix'], help="exclude models with keywords") parser.add_argument('--debug', default = False, action='store_true', help = 'print extra debug information') parser.add_argument('input', type = str, nargs = '*') args = parser.parse_args() if args.debug: log.setLevel(logging.DEBUG) log.debug({ 'debug': True }) log.debug({ 'args': args.__dict__ }) asyncio.run(create_previews(args))