#!/usr/bin/env python """ Examples: - sd15: train.py --type lora --tag girl --comments sdnext --input ~/generative/Input/mia --process original,interrogate,resize --name mia - sdxl: train.py --type lora --tag girl --comments sdnext --input ~/generative/Input/mia --process original,interrogate,resize --precision fp32 --optimizer Adafactor --sdxl --name miaxl - offline: train.py --type lora --tag girl --comments sdnext --input ~/generative/Input/mia --model /home/vlado/dev/sdnext/models/Stable-diffusion/sdxl/miaanimeSFWNSFWSDXL_v40.safetensors --dir /home/vlado/dev/sdnext/models/Lora/ --precision fp32 --optimizer Adafactor --sdxl --name miaxl """ # system imports import os import re import gc import sys import json import shutil import pathlib import asyncio import logging import tempfile import argparse # local imports import util import sdapi import options # globals args = None log = logging.getLogger('train') valid_steps = ['original', 'face', 'body', 'blur', 'range', 'upscale', 'restore', 'interrogate', 'resize', 'square', 'segment'] log_file = os.path.join(os.path.dirname(__file__), 'train.log') server_ok = False # methods def setup_logging(): from rich.theme import Theme from rich.logging import RichHandler from rich.console import Console from rich.pretty import install as pretty_install from rich.traceback import install as traceback_install console = Console(log_time=True, log_time_format='%H:%M:%S-%f', theme=Theme({ "traceback.border": "black", "traceback.border.syntax_error": "black", "inspect.value.border": "black", })) # logging.getLogger("urllib3").setLevel(logging.ERROR) # logging.getLogger("httpx").setLevel(logging.ERROR) level = logging.DEBUG if args.debug else logging.INFO logging.basicConfig(level=logging.ERROR, format='%(asctime)s | %(name)s | %(levelname)s | %(module)s | %(message)s', filename=log_file, filemode='a', encoding='utf-8', force=True) log.setLevel(logging.DEBUG) # log to file is always at level debug for facility `sd` pretty_install(console=console) traceback_install(console=console, extra_lines=1, width=console.width, word_wrap=False, indent_guides=False, suppress=[]) rh = RichHandler(show_time=True, omit_repeated_times=False, show_level=True, show_path=False, markup=False, rich_tracebacks=True, log_time_format='%H:%M:%S-%f', level=level, console=console) rh.set_name(level) while log.hasHandlers() and len(log.handlers) > 0: log.removeHandler(log.handlers[0]) log.addHandler(rh) def mem_stats(): gc.collect() import torch if torch.cuda.is_available(): with torch.no_grad(): torch.cuda.empty_cache() with torch.cuda.device('cuda'): torch.cuda.empty_cache() torch.cuda.ipc_collect() mem = util.get_memory() peak = { 'active': mem['gpu-active']['peak'], 'allocated': mem['gpu-allocated']['peak'], 'reserved': mem['gpu-reserved']['peak'] } log.debug(f"memory cpu: {mem.ram} gpu current: {mem.gpu} gpu peak: {peak}") def parse_args(): global args # pylint: disable=global-statement parser = argparse.ArgumentParser(description = 'SD.Next Train') group_server = parser.add_argument_group('Server') group_server.add_argument('--server', type=str, default='http://127.0.0.1:7860', required=False, help='server url, default: %(default)s') group_server.add_argument('--user', type=str, default=None, required=False, help='server url, default: %(default)s') group_server.add_argument('--password', type=str, default=None, required=False, help='server url, default: %(default)s') group_server.add_argument('--dir', type=str, default=None, required=False, help='folder with trained networks, default: use server setting') group_main = parser.add_argument_group('Main') group_main.add_argument('--type', type=str, choices=['embedding', 'ti', 'lora', 'lyco', 'dreambooth', 'hypernetwork'], default=None, required=True, help='training type') group_main.add_argument('--model', type=str, default='', required=False, help='base model to use for training, default: current loaded model') group_main.add_argument('--name', type=str, default=None, required=True, help='output filename') group_main.add_argument('--tag', type=str, default='person', required=False, help='primary tags, default: %(default)s') group_main.add_argument('--comments', type=str, default='', required=False, help='comments to be added to trained model metadata, default: %(default)s') group_data = parser.add_argument_group('Dataset') group_data.add_argument('--input', type=str, default=None, required=True, help='input folder with training images') group_data.add_argument('--interim', type=str, default='', required=False, help='where to store processed images, default is system temp/train') group_data.add_argument('--process', type=str, default='original,interrogate,resize,square', required=False, help=f'list of possible processing steps: {valid_steps}, default: %(default)s') group_train = parser.add_argument_group('Train') group_train.add_argument('--gradient', type=int, default=1, required=False, help='gradient accumulation steps, default: %(default)s') group_train.add_argument('--steps', type=int, default=2500, required=False, help='training steps, default: %(default)s') group_train.add_argument('--batch', type=int, default=1, required=False, help='batch size, default: %(default)s') group_train.add_argument('--lr', type=float, default=1e-04, required=False, help='model learning rate, default: %(default)s') group_train.add_argument('--dim', type=int, default=32, required=False, help='network dimension or number of vectors, default: %(default)s') # lora params group_train.add_argument('--repeats', type=int, default=1, required=False, help='number of repeats per image, default: %(default)s') group_train.add_argument('--alpha', type=float, default=0, required=False, help='lora/lyco alpha for weights scaling, default: dim/2') group_train.add_argument('--algo', type=str, default=None, choices=['locon', 'loha', 'lokr', 'ia3'], required=False, help='alternative lyco algoritm, default: %(default)s') group_train.add_argument('--args', type=str, default=None, required=False, help='lora/lyco additional network arguments, default: %(default)s') group_train.add_argument('--optimizer', type=str, default='AdamW', required=False, help='optimizer type, default: %(default)s') group_train.add_argument('--precision', type=str, choices=['fp16', 'fp32'], default='fp16', required=False, help='training precision, default: %(default)s') group_train.add_argument('--sdxl', default = False, action='store_true', help = "run sdxl training, default: %(default)s") # AdamW (default), AdamW8bit, PagedAdamW8bit, Lion8bit, PagedLion8bit, Lion, SGDNesterov, SGDNesterov8bit, DAdaptation(DAdaptAdamPreprint), DAdaptAdaGrad, DAdaptAdam, DAdaptAdan, DAdaptAdanIP, DAdaptLion, DAdaptSGD, AdaFactor group_other = parser.add_argument_group('Other') group_other.add_argument('--overwrite', default = False, action='store_true', help = "overwrite existing training, default: %(default)s") group_other.add_argument('--experimental', default = False, action='store_true', help = "enable experimental options, default: %(default)s") group_other.add_argument('--debug', default = False, action='store_true', help = "enable debug level logging, default: %(default)s") args = parser.parse_args() def prepare_server(): global server_ok # pylint: disable=global-statement try: server_status = util.Map(sdapi.progresssync()) server_state = server_status['state'] server_ok = True except Exception: log.warning(f'sdnext server error: {server_status}') server_ok = False if server_ok and server_state['job_count'] > 0: log.error(f'sdnext server not idle: {server_state}') exit(1) if server_ok: server_options = util.Map(sdapi.options()) server_options.options.save_training_settings_to_txt = False server_options.options.training_enable_tensorboard = False server_options.options.training_tensorboard_save_images = False server_options.options.pin_memory = True server_options.options.save_optimizer_state = False server_options.options.training_image_repeats_per_epoch = args.repeats server_options.options.training_write_csv_every = 0 sdapi.postsync('/sdapi/v1/options', server_options.options) log.info('updated server options') def verify_args(): server_options = util.Map(sdapi.options()) if args.model != '': if not os.path.isfile(args.model): log.error(f'cannot find loaded model: {args.model}') exit(1) if server_ok: server_options.options.sd_model_checkpoint = args.model sdapi.postsync('/sdapi/v1/options', server_options.options) elif server_ok: args.model = server_options.options.sd_model_checkpoint.split(' [')[0] if args.sdxl and (server_options.sd_backend != 'diffusers' or server_options.diffusers_pipeline != 'Stable Diffusion XL'): log.warning('server checkpoint is not sdxl') else: log.error('no model specified') exit(1) base_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) if args.type == 'lora' and not server_ok and not args.dir: log.error('offline lora training requires --dir ') exit(1) if args.type == 'lora': import transformers if transformers.__version__ != '4.30.2': log.error(f'lora training requires specific transformers version: current {transformers.__version__} required transformers==4.30.2') exit(1) args.lora_dir = server_options.options.lora_dir or args.dir if not os.path.isabs(args.lora_dir): args.lora_dir = os.path.join(base_dir, args.lora_dir) args.lyco_dir = server_options.options.lyco_dir or args.dir if not os.path.isabs(args.lyco_dir): args.lyco_dir = os.path.join(base_dir, args.lyco_dir) args.embeddings_dir = server_options.options.embeddings_dir or args.dir if not os.path.isfile(args.model): args.ckpt_dir = server_options.options.ckpt_dir if not os.path.isabs(args.ckpt_dir): args.ckpt_dir = os.path.join(base_dir, args.ckpt_dir) attempt = os.path.abspath(os.path.join(args.ckpt_dir, args.model)) args.model = attempt if os.path.isfile(attempt) else args.model if not os.path.isfile(args.model): attempt = os.path.abspath(os.path.join(args.ckpt_dir, args.model + '.safetensors')) args.model = attempt if os.path.isfile(attempt) else args.model if not os.path.isfile(args.model): log.error(f'cannot find loaded model: {args.model}') exit(1) if not os.path.exists(args.input) or not os.path.isdir(args.input): log.error(f'cannot find training folder: {args.input}') exit(1) if not os.path.exists(args.lora_dir) or not os.path.isdir(args.lora_dir): log.error(f'cannot find lora folder: {args.lora_dir}') exit(1) if not os.path.exists(args.lyco_dir) or not os.path.isdir(args.lyco_dir): log.error(f'cannot find lyco folder: {args.lyco_dir}') exit(1) if args.interim != '': args.process_dir = args.interim else: args.process_dir = os.path.join(tempfile.gettempdir(), 'train', args.name) log.debug(f'args: {vars(args)}') log.debug(f'server flags: {server_options.flags}') log.debug(f'server options: {server_options.options}') async def training_loop(): async def async_train(): res = await sdapi.post('/sdapi/v1/train/embedding', options.embedding) log.info(f'train embedding result: {res}') async def async_monitor(): from tqdm.rich import tqdm await asyncio.sleep(3) res = util.Map(sdapi.progress()) with tqdm(desc='train embedding', total=res.state.job_count) as pbar: while res.state.job_no < res.state.job_count and not res.state.interrupted and not res.state.skipped: await asyncio.sleep(2) prev_job = res.state.job_no res = util.Map(sdapi.progress()) loss = re.search(r"Loss: (.*?)(?=\<)", res.textinfo) if loss: pbar.set_postfix({ 'loss': loss.group(0) }) pbar.update(res.state.job_no - prev_job) a = asyncio.create_task(async_train()) b = asyncio.create_task(async_monitor()) await asyncio.gather(a, b) # wait for both pipeline and monitor to finish def train_embedding(): log.info(f'{args.type} options: {options.embedding}') create_options = util.Map({ "name": args.name, "num_vectors_per_token": args.dim, "overwrite_old": False, "init_text": args.tag, }) fn = os.path.join(args.embeddings_dir, args.name) + '.pt' if os.path.exists(fn) and args.overwrite: log.warning(f'delete existing embedding {fn}') os.remove(fn) else: log.error(f'embedding exists {fn}') return log.info(f'create embedding {create_options}') res = sdapi.postsync('/sdapi/v1/create/embedding', create_options) if 'info' in res and 'error' in res['info']: # formatted error log.error(res.info) elif 'info' in res: # no error asyncio.run(training_loop()) else: # unknown error log.error(f'create embedding error {res}') def train_lora(): fn = os.path.join(options.lora.output_dir, args.name) for ext in ['.ckpt', '.pt', '.safetensors']: if os.path.exists(fn + ext): if args.overwrite: log.warning(f'delete existing lora: {fn + ext}') os.remove(fn + ext) else: log.error(f'lora exists: {fn + ext}') return log.info(f'{args.type} options: {options.lora}') # lora imports lora_path = os.path.abspath(os.path.join(os.path.dirname(__file__), os.pardir, 'modules', 'lora')) lycoris_path = os.path.abspath(os.path.join(os.path.dirname(__file__), os.pardir, 'modules', 'lycoris')) sys.path.append(lora_path) if args.type == 'lyco': sys.path.append(lycoris_path) log.debug('importing lora lib') if not args.sdxl: import train_network trainer = train_network.NetworkTrainer() trainer.train(options.lora) else: import sdxl_train_network trainer = sdxl_train_network.SdxlNetworkTrainer() trainer.train(options.lora) if args.type == 'lyco': log.debug('importing lycoris lib') import importlib _network_module = importlib.import_module(options.lora.network_module) def prepare_options(): if args.type == 'embedding': log.info('train embedding') options.lora.in_json = None if args.type == 'dreambooth': log.info('train using dreambooth style training') options.lora.vae_batch_size = args.batch options.lora.in_json = None if args.type == 'lora': log.info('train using lora style training') options.lora.output_dir = args.lora_dir options.lora.in_json = os.path.join(args.process_dir, args.name + '.json') if args.type == 'lyco': log.info('train using lycoris network') options.lora.output_dir = args.lora_dir options.lora.network_module = 'lycoris.kohya' options.lora.in_json = os.path.join(args.process_dir, args.name + '.json') # lora specific options.lora.save_model_as = 'safetensors' options.lora.pretrained_model_name_or_path = args.model options.lora.output_name = args.name options.lora.max_train_steps = args.steps options.lora.network_dim = args.dim options.lora.network_alpha = args.dim // 2 if args.alpha == 0 else args.alpha options.lora.network_args = [] options.lora.training_comment = args.comments options.lora.sdpa = True options.lora.optimizer_type = args.optimizer if args.algo is not None: options.lora.network_args.append(f'algo={args.algo}') if args.args is not None: for net_arg in args.args: options.lora.network_args.append(net_arg) options.lora.gradient_accumulation_steps = args.gradient options.lora.learning_rate = args.lr options.lora.train_batch_size = args.batch options.lora.train_data_dir = args.process_dir options.lora.no_half_vae = args.precision == 'fp16' # embedding specific options.embedding.embedding_name = args.name options.embedding.learn_rate = str(args.lr) options.embedding.batch_size = args.batch options.embedding.steps = args.steps options.embedding.data_root = args.process_dir options.embedding.log_directory = os.path.join(args.process_dir, 'log') options.embedding.gradient_step = args.gradient def process_inputs(): import process import filetype pathlib.Path(args.process_dir).mkdir(parents=True, exist_ok=True) processing_options = args.process.split(',') if isinstance(args.process, str) else args.process processing_options = [opt.strip() for opt in re.split(',| ', args.process)] log.info(f'processing steps: {processing_options}') for step in processing_options: if step not in valid_steps: log.error(f'invalid processing step: {[step]}') exit(1) for root, _sub_dirs, folder in os.walk(args.input): files = [os.path.join(root, f) for f in folder if filetype.is_image(os.path.join(root, f))] log.info(f'processing input images: {len(files)}') if os.path.exists(args.process_dir): if args.overwrite: log.warning(f'removing existing processed folder: {args.process_dir}') shutil.rmtree(args.process_dir, ignore_errors=True) else: log.info(f'processed folder exists: {args.process_dir}') steps = [step for step in processing_options if step in ['face', 'body', 'original']] process.reset() options.process.target_size = 1024 if args.sdxl else 512 metadata = {} for step in steps: if step == 'face': opts = [step for step in processing_options if step not in ['body', 'original']] if step == 'body': opts = [step for step in processing_options if step not in ['face', 'original', 'upscale', 'restore']] # body does not perform upscale or restore if step == 'original': opts = [step for step in processing_options if step not in ['face', 'body', 'upscale', 'restore', 'blur', 'range', 'segment']] # original does not perform most steps log.info(f'processing current step: {opts}') tag = step if tag == 'original' and args.tag is not None: concept = args.tag.split(',')[0].strip() else: concept = step if args.type in ['lora', 'lyco', 'dreambooth']: folder = os.path.join(args.process_dir, str(args.repeats) + '_' + concept) # separate concepts per folder if args.type in ['embedding']: folder = os.path.join(args.process_dir) # everything into same folder log.info(f'processing concept: {concept}') log.info(f'processing output folder: {folder}') pathlib.Path(folder).mkdir(parents=True, exist_ok=True) results = {} if server_ok: for f in files: res = process.file(filename = f, folder = folder, tag = args.tag, requested = opts) if res.image: # valid result results[res.type] = results.get(res.type, 0) + 1 results['total'] = results.get('total', 0) + 1 rel_path = res.basename.replace(os.path.commonpath([res.basename, args.process_dir]), '') if rel_path.startswith(os.path.sep): rel_path = rel_path[1:] metadata[rel_path] = { 'caption': res.caption, 'tags': ','.join(res.tags) } if options.lora.in_json is None: with open(res.output.replace(options.process.format, '.txt'), "w", encoding='utf-8') as outfile: outfile.write(res.caption) log.info(f"processing {'saved' if res.image is not None else 'skipped'}: {f} => {res.output} {res.ops} {res.message}") else: log.info('processing skipped: offline') folders = [os.path.join(args.process_dir, folder) for folder in os.listdir(args.process_dir) if os.path.isdir(os.path.join(args.process_dir, folder))] log.info(f'input datasets {folders}') if options.lora.in_json is not None: with open(options.lora.in_json, "w", encoding='utf-8') as outfile: # write json at the end only outfile.write(json.dumps(metadata, indent=2)) for folder in folders: # create latents import latents latents.create_vae_latents(util.Map({ 'input': folder, 'json': options.lora.in_json })) latents.unload_vae() r = { 'inputs': len(files), 'outputs': results, 'metadata': options.lora.in_json } log.info(f'processing steps result: {r}') if args.gradient < 0: log.info(f"setting gradient accumulation to number of images: {results['total']}") options.lora.gradient_accumulation_steps = results['total'] options.embedding.gradient_step = results['total'] process.unload() if __name__ == '__main__': parse_args() setup_logging() log.info('SD.Next Train') sdapi.sd_url = args.server if args.user is not None: sdapi.sd_username = args.user if args.password is not None: sdapi.sd_password = args.password prepare_server() verify_args() prepare_options() mem_stats() process_inputs() mem_stats() try: if args.type == 'embedding': train_embedding() if args.type == 'lora' or args.type == 'lyco' or args.type == 'dreambooth': train_lora() except KeyboardInterrupt: log.error('interrupt requested') sdapi.interrupt() mem_stats() log.info('done')