import platform from typing import NamedTuple, Callable, Optional import torch from modules.errors import log from modules.sd_hijack_utils import CondFunc memory_providers = ["None", "atiadlxx (AMD only)"] default_memory_provider = "None" if platform.system() == "Windows": memory_providers.append("Performance Counter") default_memory_provider = "Performance Counter" do_nothing = lambda: None # pylint: disable=unnecessary-lambda-assignment do_nothing_with_self = lambda self: None # pylint: disable=unnecessary-lambda-assignment def _set_memory_provider(): from modules.shared import opts, cmd_opts if opts.directml_memory_provider == "Performance Counter": from .backend import pdh_mem_get_info from .memory import MemoryProvider torch.dml.mem_get_info = pdh_mem_get_info if torch.dml.memory_provider is not None: del torch.dml.memory_provider torch.dml.memory_provider = MemoryProvider() elif opts.directml_memory_provider == "atiadlxx (AMD only)": device_name = torch.dml.get_device_name(cmd_opts.device_id) if "AMD" not in device_name and "Radeon" not in device_name: log.warning(f"Memory stats provider is changed to None because the current device is not AMDGPU. Current Device: {device_name}") opts.directml_memory_provider = "None" _set_memory_provider() return from .backend import amd_mem_get_info torch.dml.mem_get_info = amd_mem_get_info else: from .backend import mem_get_info torch.dml.mem_get_info = mem_get_info torch.cuda.mem_get_info = torch.dml.mem_get_info def directml_init(): try: from modules.dml.backend import DirectML # pylint: disable=ungrouped-imports # Alternative of torch.cuda for DirectML. torch.dml = DirectML torch.cuda.is_available = lambda: False torch.cuda.device = torch.dml.device torch.cuda.device_count = torch.dml.device_count torch.cuda.current_device = torch.dml.current_device torch.cuda.get_device_name = torch.dml.get_device_name torch.cuda.get_device_properties = torch.dml.get_device_properties torch.cuda.empty_cache = do_nothing torch.cuda.ipc_collect = do_nothing torch.cuda.memory_stats = torch.dml.memory_stats torch.cuda.mem_get_info = torch.dml.mem_get_info torch.cuda.memory_allocated = torch.dml.memory_allocated torch.cuda.max_memory_allocated = torch.dml.max_memory_allocated torch.cuda.reset_peak_memory_stats = torch.dml.reset_peak_memory_stats torch.cuda.utilization = lambda: 0 torch.Tensor.directml = lambda self: self.to(torch.dml.current_device()) except Exception as e: log.error(f'DirectML initialization failed: {e}') return False, e return True, None def directml_do_hijack(): import modules.dml.hijack # pylint: disable=unused-import from modules.devices import device CondFunc('torch.Generator', lambda orig_func, device: orig_func("cpu"), lambda orig_func, device: True) if not torch.dml.has_float64_support(device): torch.Tensor.__str__ = do_nothing_with_self CondFunc('torch.from_numpy', lambda orig_func, *args, **kwargs: orig_func(args[0].astype('float32')), lambda *args, **kwargs: args[1].dtype == float) _set_memory_provider() class OverrideItem(NamedTuple): value: str condition: Optional[Callable] message: Optional[str] opts_override_table = { "diffusers_generator_device": OverrideItem("CPU", None, "DirectML does not support torch Generator API"), "diffusers_model_cpu_offload": OverrideItem(False, None, "Diffusers model CPU offloading does not support DirectML devices"), "diffusers_seq_cpu_offload": OverrideItem(False, lambda opts: opts.diffusers_pipeline != "Stable Diffusion XL", "Diffusers sequential CPU offloading is available only on StableDiffusionXLPipeline with DirectML devices"), } def directml_override_opts(): from modules import shared if shared.cmd_opts.experimental: return count = 0 for key in opts_override_table: item = opts_override_table[key] if getattr(shared.opts, key) != item.value and (item.condition is None or item.condition(shared.opts)): count += 1 setattr(shared.opts, key, item.value) shared.log.warning(f'Overriding: {key}={item.value} {item.message if item.message is not None else ""}') if count > 0: shared.log.info(f'Options override: count={count}. If you want to keep them from overriding, run with --experimental argument.') _set_memory_provider()