import os import html import json import time import shutil import torch import tqdm import gradio as gr import safetensors.torch from modules.merging.merge import merge_models from modules.merging.merge_utils import TRIPLE_METHODS from modules import shared, images, sd_models, sd_vae, sd_models_config, devices def run_pnginfo(image): if image is None: return '', '', '' geninfo, items = images.read_info_from_image(image) items = {**{'parameters': geninfo}, **items} info = '' for key, text in items.items(): if key != 'UserComment': info += f"
{html.escape(str(key))}: {html.escape(str(text))}
" return '', geninfo, info def create_config(ckpt_result, config_source, a, b, c): def config(x): res = sd_models_config.find_checkpoint_config_near_filename(x) if x else None return res if res != shared.sd_default_config else None if config_source == 0: cfg = config(a) or config(b) or config(c) elif config_source == 1: cfg = config(b) elif config_source == 2: cfg = config(c) else: cfg = None if cfg is None: return filename, _ = os.path.splitext(ckpt_result) checkpoint_filename = filename + ".yaml" shared.log.info("Copying config: {cfg} -> {checkpoint_filename}") shutil.copyfile(cfg, checkpoint_filename) def to_half(tensor, enable): if enable and tensor.dtype == torch.float: return tensor.half() return tensor def run_modelmerger(id_task, **kwargs): # pylint: disable=unused-argument shared.state.begin('merge') t0 = time.time() def fail(message): shared.state.textinfo = message shared.state.end() return [*[gr.update() for _ in range(4)], message] kwargs["models"] = { "model_a": sd_models.get_closet_checkpoint_match(kwargs.get("primary_model_name", None)).filename, "model_b": sd_models.get_closet_checkpoint_match(kwargs.get("secondary_model_name", None)).filename, } if kwargs.get("primary_model_name", None) in [None, 'None']: return fail("Failed: Merging requires a primary model.") primary_model_info = sd_models.get_closet_checkpoint_match(kwargs.get("primary_model_name", None)) if kwargs.get("secondary_model_name", None) in [None, 'None']: return fail("Failed: Merging requires a secondary model.") secondary_model_info = sd_models.get_closet_checkpoint_match(kwargs.get("secondary_model_name", None)) if kwargs.get("tertiary_model_name", None) in [None, 'None'] and kwargs.get("merge_mode", None) in TRIPLE_METHODS: return fail(f"Failed: Interpolation method ({kwargs.get('merge_mode', None)}) requires a tertiary model.") tertiary_model_info = sd_models.get_closet_checkpoint_match(kwargs.get("tertiary_model_name", None)) if kwargs.get("merge_mode", None) in TRIPLE_METHODS else None del kwargs["primary_model_name"] del kwargs["secondary_model_name"] if kwargs.get("tertiary_model_name", None) is not None: kwargs["models"] |= {"model_c": sd_models.get_closet_checkpoint_match(kwargs.get("tertiary_model_name", None)).filename} del kwargs["tertiary_model_name"] if kwargs.get("alpha_base", None) and kwargs.get("alpha_in_blocks", None) and kwargs.get("alpha_mid_block", None) and kwargs.get("alpha_out_blocks", None): try: alpha = [float(x) for x in [kwargs["alpha_base"]] + kwargs["alpha_in_blocks"].split(",") + [kwargs["alpha_mid_block"]] + kwargs["alpha_out_blocks"].split(",")] assert len(alpha) == 26 or len(alpha) == 20, "Alpha Block Weights are wrong length (26 or 20 for SDXL)" kwargs["alpha"] = alpha except KeyError as ke: shared.log.warning(f"Merge: Malformed manual block weight: {ke}") elif kwargs.get("alpha_preset", None) or kwargs.get("alpha", None): kwargs["alpha"] = kwargs.get("alpha_preset", kwargs["alpha"]) kwargs.pop("alpha_base", None) kwargs.pop("alpha_in_blocks", None) kwargs.pop("alpha_mid_block", None) kwargs.pop("alpha_out_blocks", None) kwargs.pop("alpha_preset", None) if kwargs.get("beta_base", None) and kwargs.get("beta_in_blocks", None) and kwargs.get("beta_mid_block", None) and kwargs.get("beta_out_blocks", None): try: beta = [float(x) for x in [kwargs["beta_base"]] + kwargs["beta_in_blocks"].split(",") + [kwargs["beta_mid_block"]] + kwargs["beta_out_blocks"].split(",")] assert len(beta) == 26 or len(beta) == 20, "Beta Block Weights are wrong length (26 or 20 for SDXL)" kwargs["beta"] = beta except KeyError as ke: shared.log.warning(f"Merge: Malformed manual block weight: {ke}") elif kwargs.get("beta_preset", None) or kwargs.get("beta", None): kwargs["beta"] = kwargs.get("beta_preset", kwargs["beta"]) kwargs.pop("beta_base", None) kwargs.pop("beta_in_blocks", None) kwargs.pop("beta_mid_block", None) kwargs.pop("beta_out_blocks", None) kwargs.pop("beta_preset", None) if kwargs["device"] == "gpu": kwargs["device"] = devices.device elif kwargs["device"] == "shuffle": kwargs["device"] = torch.device("cpu") kwargs["work_device"] = devices.device else: kwargs["device"] = torch.device("cpu") if kwargs.pop("unload", False): sd_models.unload_model_weights() try: theta_0 = merge_models(**kwargs) except Exception as e: return fail(f"{e}") try: theta_0 = theta_0.to_dict() #TensorDict -> Dict if necessary except Exception: pass bake_in_vae_filename = sd_vae.vae_dict.get(kwargs.get("bake_in_vae", None), None) if bake_in_vae_filename is not None: shared.log.info(f"Merge VAE='{bake_in_vae_filename}'") shared.state.textinfo = 'Merge VAE' vae_dict = sd_vae.load_vae_dict(bake_in_vae_filename) for key in vae_dict.keys(): theta_0_key = 'first_stage_model.' + key if theta_0_key in theta_0: theta_0[theta_0_key] = to_half(vae_dict[key], kwargs.get("precision", "fp16") == "fp16") del vae_dict ckpt_dir = shared.opts.ckpt_dir or sd_models.model_path filename = kwargs.get("custom_name", "Unnamed_Merge") filename += "." + kwargs.get("checkpoint_format", None) output_modelname = os.path.join(ckpt_dir, filename) shared.state.textinfo = "merge saving" metadata = None if kwargs.get("save_metadata", False): metadata = {"format": "pt", "sd_merge_models": {}} merge_recipe = { "type": "SDNext", # indicate this model was merged with webui's built-in merger "primary_model_hash": primary_model_info.sha256, "secondary_model_hash": secondary_model_info.sha256 if secondary_model_info else None, "tertiary_model_hash": tertiary_model_info.sha256 if tertiary_model_info else None, "merge_mode": kwargs.get('merge_mode', None), "alpha": kwargs.get('alpha', None), "beta": kwargs.get('beta', None), "precision": kwargs.get('precision', None), "custom_name": kwargs.get("custom_name", "Unamed_Merge"), } metadata["sd_merge_recipe"] = json.dumps(merge_recipe) def add_model_metadata(checkpoint_info): checkpoint_info.calculate_shorthash() metadata["sd_merge_models"][checkpoint_info.sha256] = { "name": checkpoint_info.name, "legacy_hash": checkpoint_info.hash, "sd_merge_recipe": checkpoint_info.metadata.get("sd_merge_recipe", None) } metadata["sd_merge_models"].update(checkpoint_info.metadata.get("sd_merge_models", {})) add_model_metadata(primary_model_info) if secondary_model_info: add_model_metadata(secondary_model_info) if tertiary_model_info: add_model_metadata(tertiary_model_info) metadata["sd_merge_models"] = json.dumps(metadata["sd_merge_models"]) _, extension = os.path.splitext(output_modelname) if os.path.exists(output_modelname) and not kwargs.get("overwrite", False): return [*[gr.Dropdown.update(choices=sd_models.checkpoint_tiles()) for _ in range(4)], f"Model alredy exists: {output_modelname}"] if extension.lower() == ".safetensors": safetensors.torch.save_file(theta_0, output_modelname, metadata=metadata) else: torch.save(theta_0, output_modelname) t1 = time.time() shared.log.info(f"Merge complete: saved='{output_modelname}' time={t1-t0:.2f}") sd_models.list_models() created_model = next((ckpt for ckpt in sd_models.checkpoints_list.values() if ckpt.name == filename), None) if created_model: created_model.calculate_shorthash() devices.torch_gc(force=True) shared.state.end() return [*[gr.Dropdown.update(choices=sd_models.checkpoint_tiles()) for _ in range(4)], f"Model saved to {output_modelname}"] def run_modelconvert(model, checkpoint_formats, precision, conv_type, custom_name, unet_conv, text_encoder_conv, vae_conv, others_conv, fix_clip): # position_ids in clip is int64. model_ema.num_updates is int32 dtypes_to_fp16 = {torch.float32, torch.float64, torch.bfloat16} dtypes_to_bf16 = {torch.float32, torch.float64, torch.float16} def conv_fp16(t: torch.Tensor): return t.half() if t.dtype in dtypes_to_fp16 else t def conv_bf16(t: torch.Tensor): return t.bfloat16() if t.dtype in dtypes_to_bf16 else t def conv_full(t): return t _g_precision_func = { "full": conv_full, "fp32": conv_full, "fp16": conv_fp16, "bf16": conv_bf16, } def check_weight_type(k: str) -> str: if k.startswith("model.diffusion_model"): return "unet" elif k.startswith("first_stage_model"): return "vae" elif k.startswith("cond_stage_model"): return "clip" return "other" def load_model(path): if path.endswith(".safetensors"): m = safetensors.torch.load_file(path, device="cpu") else: m = torch.load(path, map_location="cpu") state_dict = m["state_dict"] if "state_dict" in m else m return state_dict def fix_model(model, fix_clip=False): # code from model-toolkit nai_keys = { 'cond_stage_model.transformer.embeddings.': 'cond_stage_model.transformer.text_model.embeddings.', 'cond_stage_model.transformer.encoder.': 'cond_stage_model.transformer.text_model.encoder.', 'cond_stage_model.transformer.final_layer_norm.': 'cond_stage_model.transformer.text_model.final_layer_norm.' } for k in list(model.keys()): for r in nai_keys: if type(k) == str and k.startswith(r): new_key = k.replace(r, nai_keys[r]) model[new_key] = model[k] del model[k] shared.log.warning(f"Model convert: fixed NovelAI error key: {k}") break if fix_clip: i = "cond_stage_model.transformer.text_model.embeddings.position_ids" if i in model: correct = torch.Tensor([list(range(77))]).to(torch.int64) now = model[i].to(torch.int64) broken = correct.ne(now) broken = [i for i in range(77) if broken[0][i]] model[i] = correct if len(broken) != 0: shared.log.warning(f"Model convert: fixed broken CLiP: {broken}") return model if model == "": return "Error: you must choose a model" if len(checkpoint_formats) == 0: return "Error: at least choose one model save format" extra_opt = { "unet": unet_conv, "clip": text_encoder_conv, "vae": vae_conv, "other": others_conv } shared.state.begin('convert') model_info = sd_models.checkpoints_list[model] shared.state.textinfo = f"Loading {model_info.filename}..." shared.log.info(f"Model convert loading: {model_info.filename}") state_dict = load_model(model_info.filename) ok = {} # {"state_dict": {}} conv_func = _g_precision_func[precision] def _hf(wk: str, t: torch.Tensor): if not isinstance(t, torch.Tensor): return w_t = check_weight_type(wk) conv_t = extra_opt[w_t] if conv_t == "convert": ok[wk] = conv_func(t) elif conv_t == "copy": ok[wk] = t elif conv_t == "delete": return shared.log.info("Model convert: running") if conv_type == "ema-only": for k in tqdm.tqdm(state_dict): ema_k = "___" try: ema_k = "model_ema." + k[6:].replace(".", "") except Exception: pass if ema_k in state_dict: _hf(k, state_dict[ema_k]) elif not k.startswith("model_ema.") or k in ["model_ema.num_updates", "model_ema.decay"]: _hf(k, state_dict[k]) elif conv_type == "no-ema": for k, v in tqdm.tqdm(state_dict.items()): if "model_ema." not in k: _hf(k, v) else: for k, v in tqdm.tqdm(state_dict.items()): _hf(k, v) ok = fix_model(ok, fix_clip=fix_clip) output = "" ckpt_dir = shared.cmd_opts.ckpt_dir or sd_models.model_path save_name = f"{model_info.model_name}-{precision}" if conv_type != "disabled": save_name += f"-{conv_type}" if custom_name != "": save_name = custom_name for fmt in checkpoint_formats: ext = ".safetensors" if fmt == "safetensors" else ".ckpt" _save_name = save_name + ext save_path = os.path.join(ckpt_dir, _save_name) shared.log.info(f"Model convert saving: {save_path}") if fmt == "safetensors": safetensors.torch.save_file(ok, save_path) else: torch.save({"state_dict": ok}, save_path) output += f"Checkpoint saved to {save_path}
" shared.state.end() return output