import os from functools import wraps from contextlib import nullcontext import torch import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import import numpy as np from modules import devices, errors device_supports_fp64 = torch.xpu.has_fp64_dtype() # pylint: disable=protected-access, missing-function-docstring, line-too-long, unnecessary-lambda, no-else-return class DummyDataParallel(torch.nn.Module): # pylint: disable=missing-class-docstring, unused-argument, too-few-public-methods def __new__(cls, module, device_ids=None, output_device=None, dim=0): # pylint: disable=unused-argument if isinstance(device_ids, list) and len(device_ids) > 1: errors.log.error("IPEX backend doesn't support DataParallel on multiple XPU devices") return module.to(devices.device) def return_null_context(*args, **kwargs): # pylint: disable=unused-argument return nullcontext() @property def is_cuda(self): return self.device.type == 'xpu' or self.device.type == 'cuda' def check_device(device): return bool((isinstance(device, torch.device) and device.type == "cuda") or (isinstance(device, str) and "cuda" in device) or isinstance(device, int)) def return_xpu(device): return f"xpu:{device.split(':')[-1]}" if isinstance(device, str) and ":" in device else f"xpu:{device}" if isinstance(device, int) else torch.device(devices.device) if isinstance(device, torch.device) else devices.device # Autocast original_autocast_init = torch.amp.autocast_mode.autocast.__init__ @wraps(torch.amp.autocast_mode.autocast.__init__) def autocast_init(self, device_type, dtype=None, enabled=True, cache_enabled=None): if device_type == "cuda" or device_type == "xpu": if dtype is None: dtype = devices.dtype return original_autocast_init(self, device_type="xpu", dtype=dtype, enabled=enabled, cache_enabled=cache_enabled) else: return original_autocast_init(self, device_type=device_type, dtype=dtype, enabled=enabled, cache_enabled=cache_enabled) # Latent Antialias CPU Offload: original_interpolate = torch.nn.functional.interpolate @wraps(torch.nn.functional.interpolate) def interpolate(tensor, size=None, scale_factor=None, mode='nearest', align_corners=None, recompute_scale_factor=None, antialias=False): # pylint: disable=too-many-arguments if antialias or align_corners is not None or mode == 'bicubic': return_device = tensor.device return_dtype = tensor.dtype return original_interpolate(tensor.to("cpu", dtype=torch.float32), size=size, scale_factor=scale_factor, mode=mode, align_corners=align_corners, recompute_scale_factor=recompute_scale_factor, antialias=antialias).to(return_device, dtype=return_dtype) else: return original_interpolate(tensor, size=size, scale_factor=scale_factor, mode=mode, align_corners=align_corners, recompute_scale_factor=recompute_scale_factor, antialias=antialias) # Diffusers Float64 (Alchemist GPUs doesn't support 64 bit): original_from_numpy = torch.from_numpy @wraps(torch.from_numpy) def from_numpy(ndarray): if ndarray.dtype == float: return original_from_numpy(ndarray.astype('float32')) else: return original_from_numpy(ndarray) original_as_tensor = torch.as_tensor @wraps(torch.as_tensor) def as_tensor(data, dtype=None, device=None): if check_device(device): device = return_xpu(device) if isinstance(data, np.ndarray) and data.dtype == float and not ( (isinstance(device, torch.device) and device.type == "cpu") or (isinstance(device, str) and "cpu" in device)): return original_as_tensor(data, dtype=torch.float32, device=device) else: return original_as_tensor(data, dtype=dtype, device=device) if device_supports_fp64 and os.environ.get('IPEX_FORCE_ATTENTION_SLICE', None) is None: original_torch_bmm = torch.bmm original_scaled_dot_product_attention = torch.nn.functional.scaled_dot_product_attention else: # 32 bit attention workarounds for Alchemist: try: from .attention import torch_bmm_32_bit as original_torch_bmm from .attention import scaled_dot_product_attention_32_bit as original_scaled_dot_product_attention except Exception: # pylint: disable=broad-exception-caught original_torch_bmm = torch.bmm original_scaled_dot_product_attention = torch.nn.functional.scaled_dot_product_attention # Data Type Errors: @wraps(torch.bmm) def torch_bmm(input, mat2, *, out=None): if input.dtype != mat2.dtype: mat2 = mat2.to(input.dtype) return original_torch_bmm(input, mat2, out=out) @wraps(torch.nn.functional.scaled_dot_product_attention) def scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False): if query.dtype != key.dtype: key = key.to(dtype=query.dtype) if query.dtype != value.dtype: value = value.to(dtype=query.dtype) if attn_mask is not None and query.dtype != attn_mask.dtype: attn_mask = attn_mask.to(dtype=query.dtype) return original_scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=dropout_p, is_causal=is_causal) # A1111 FP16 original_functional_group_norm = torch.nn.functional.group_norm @wraps(torch.nn.functional.group_norm) def functional_group_norm(input, num_groups, weight=None, bias=None, eps=1e-05): if weight is not None and input.dtype != weight.data.dtype: input = input.to(dtype=weight.data.dtype) if bias is not None and weight is not None and bias.data.dtype != weight.data.dtype: bias.data = bias.data.to(dtype=weight.data.dtype) return original_functional_group_norm(input, num_groups, weight=weight, bias=bias, eps=eps) # A1111 BF16 original_functional_layer_norm = torch.nn.functional.layer_norm @wraps(torch.nn.functional.layer_norm) def functional_layer_norm(input, normalized_shape, weight=None, bias=None, eps=1e-05): if weight is not None and input.dtype != weight.data.dtype: input = input.to(dtype=weight.data.dtype) if bias is not None and weight is not None and bias.data.dtype != weight.data.dtype: bias.data = bias.data.to(dtype=weight.data.dtype) return original_functional_layer_norm(input, normalized_shape, weight=weight, bias=bias, eps=eps) # Training original_functional_linear = torch.nn.functional.linear @wraps(torch.nn.functional.linear) def functional_linear(input, weight, bias=None): if input.dtype != weight.data.dtype: input = input.to(dtype=weight.data.dtype) if bias is not None and bias.data.dtype != weight.data.dtype: bias.data = bias.data.to(dtype=weight.data.dtype) return original_functional_linear(input, weight, bias=bias) original_functional_conv2d = torch.nn.functional.conv2d @wraps(torch.nn.functional.conv2d) def functional_conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1): if input.dtype != weight.data.dtype: input = input.to(dtype=weight.data.dtype) if bias is not None and bias.data.dtype != weight.data.dtype: bias.data = bias.data.to(dtype=weight.data.dtype) return original_functional_conv2d(input, weight, bias=bias, stride=stride, padding=padding, dilation=dilation, groups=groups) # A1111 Embedding BF16 original_torch_cat = torch.cat @wraps(torch.cat) def torch_cat(tensor, *args, **kwargs): if len(tensor) == 3 and (tensor[0].dtype != tensor[1].dtype or tensor[2].dtype != tensor[1].dtype): return original_torch_cat([tensor[0].to(tensor[1].dtype), tensor[1], tensor[2].to(tensor[1].dtype)], *args, **kwargs) else: return original_torch_cat(tensor, *args, **kwargs) # SwinIR BF16: original_functional_pad = torch.nn.functional.pad @wraps(torch.nn.functional.pad) def functional_pad(input, pad, mode='constant', value=None): if mode == 'reflect' and input.dtype == torch.bfloat16: return original_functional_pad(input.to(torch.float32), pad, mode=mode, value=value).to(dtype=torch.bfloat16) else: return original_functional_pad(input, pad, mode=mode, value=value) original_torch_tensor = torch.tensor @wraps(torch.tensor) def torch_tensor(data, *args, dtype=None, device=None, **kwargs): if check_device(device): device = return_xpu(device) if not device_supports_fp64: if (isinstance(device, torch.device) and device.type == "xpu") or (isinstance(device, str) and "xpu" in device): if dtype == torch.float64: dtype = torch.float32 elif dtype is None and (hasattr(data, "dtype") and (data.dtype == torch.float64 or data.dtype == float)): dtype = torch.float32 return original_torch_tensor(data, *args, dtype=dtype, device=device, **kwargs) original_Tensor_to = torch.Tensor.to @wraps(torch.Tensor.to) def Tensor_to(self, device=None, *args, **kwargs): if check_device(device): return original_Tensor_to(self, return_xpu(device), *args, **kwargs) else: return original_Tensor_to(self, device, *args, **kwargs) original_Tensor_cuda = torch.Tensor.cuda @wraps(torch.Tensor.cuda) def Tensor_cuda(self, device=None, *args, **kwargs): if check_device(device): return original_Tensor_cuda(self, return_xpu(device), *args, **kwargs) else: return original_Tensor_cuda(self, device, *args, **kwargs) original_UntypedStorage_init = torch.UntypedStorage.__init__ @wraps(torch.UntypedStorage.__init__) def UntypedStorage_init(*args, device=None, **kwargs): if check_device(device): return original_UntypedStorage_init(*args, device=return_xpu(device), **kwargs) else: return original_UntypedStorage_init(*args, device=device, **kwargs) original_UntypedStorage_cuda = torch.UntypedStorage.cuda @wraps(torch.UntypedStorage.cuda) def UntypedStorage_cuda(self, device=None, *args, **kwargs): if check_device(device): return original_UntypedStorage_cuda(self, return_xpu(device), *args, **kwargs) else: return original_UntypedStorage_cuda(self, device, *args, **kwargs) original_torch_empty = torch.empty @wraps(torch.empty) def torch_empty(*args, device=None, **kwargs): if check_device(device): return original_torch_empty(*args, device=return_xpu(device), **kwargs) else: return original_torch_empty(*args, device=device, **kwargs) original_torch_randn = torch.randn @wraps(torch.randn) def torch_randn(*args, device=None, dtype=None, **kwargs): if dtype == bytes: dtype = None if check_device(device): return original_torch_randn(*args, device=return_xpu(device), **kwargs) else: return original_torch_randn(*args, device=device, **kwargs) original_torch_ones = torch.ones @wraps(torch.ones) def torch_ones(*args, device=None, **kwargs): if check_device(device): return original_torch_ones(*args, device=return_xpu(device), **kwargs) else: return original_torch_ones(*args, device=device, **kwargs) original_torch_zeros = torch.zeros @wraps(torch.zeros) def torch_zeros(*args, device=None, **kwargs): if check_device(device): return original_torch_zeros(*args, device=return_xpu(device), **kwargs) else: return original_torch_zeros(*args, device=device, **kwargs) original_torch_linspace = torch.linspace @wraps(torch.linspace) def torch_linspace(*args, device=None, **kwargs): if check_device(device): return original_torch_linspace(*args, device=return_xpu(device), **kwargs) else: return original_torch_linspace(*args, device=device, **kwargs) original_torch_Generator = torch.Generator @wraps(torch.Generator) def torch_Generator(device=None): if check_device(device): return original_torch_Generator(return_xpu(device)) else: return original_torch_Generator(device) original_torch_load = torch.load @wraps(torch.load) def torch_load(f, map_location=None, *args, **kwargs): if check_device(map_location): return original_torch_load(f, *args, map_location=return_xpu(map_location), **kwargs) else: return original_torch_load(f, *args, map_location=map_location, **kwargs) # Hijack Functions: def ipex_hijacks(): torch.tensor = torch_tensor torch.Tensor.to = Tensor_to torch.Tensor.cuda = Tensor_cuda torch.UntypedStorage.__init__ = UntypedStorage_init torch.UntypedStorage.cuda = UntypedStorage_cuda torch.empty = torch_empty torch.randn = torch_randn torch.ones = torch_ones torch.zeros = torch_zeros torch.linspace = torch_linspace torch.Generator = torch_Generator torch.load = torch_load torch.backends.cuda.sdp_kernel = return_null_context torch.nn.DataParallel = DummyDataParallel torch.UntypedStorage.is_cuda = is_cuda torch.amp.autocast_mode.autocast.__init__ = autocast_init torch.nn.functional.scaled_dot_product_attention = scaled_dot_product_attention torch.nn.functional.group_norm = functional_group_norm torch.nn.functional.layer_norm = functional_layer_norm torch.nn.functional.linear = functional_linear torch.nn.functional.conv2d = functional_conv2d torch.nn.functional.interpolate = interpolate torch.nn.functional.pad = functional_pad torch.bmm = torch_bmm torch.cat = torch_cat if not device_supports_fp64: torch.from_numpy = from_numpy torch.as_tensor = as_tensor