import os import sys from collections import namedtuple from pathlib import Path import re import torch import torch.hub # pylint: disable=ungrouped-imports from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from modules import devices, paths, shared, lowvram, errors blip_image_eval_size = 384 clip_model_name = 'ViT-L/14' Category = namedtuple("Category", ["name", "topn", "items"]) re_topn = re.compile(r"\.top(\d+)\.") def category_types(): return [f.stem for f in Path(shared.interrogator.content_dir).glob('*.txt')] def download_default_clip_interrogate_categories(content_dir): shared.log.info("Downloading CLIP categories...") tmpdir = f"{content_dir}_tmp" cat_types = ["artists", "flavors", "mediums", "movements"] try: os.makedirs(tmpdir, exist_ok=True) for category_type in cat_types: torch.hub.download_url_to_file(f"https://raw.githubusercontent.com/pharmapsychotic/clip-interrogator/main/clip_interrogator/data/{category_type}.txt", os.path.join(tmpdir, f"{category_type}.txt")) os.rename(tmpdir, content_dir) except Exception as e: errors.display(e, "downloading default CLIP interrogate categories") finally: if os.path.exists(tmpdir): os.removedirs(tmpdir) class InterrogateModels: blip_model = None clip_model = None clip_preprocess = None dtype = None running_on_cpu = None def __init__(self, content_dir): self.loaded_categories = None self.skip_categories = [] self.content_dir = content_dir self.running_on_cpu = devices.device_interrogate == torch.device("cpu") def categories(self): if not os.path.exists(self.content_dir): download_default_clip_interrogate_categories(self.content_dir) if self.loaded_categories is not None and self.skip_categories == shared.opts.interrogate_clip_skip_categories: return self.loaded_categories self.loaded_categories = [] if os.path.exists(self.content_dir): self.skip_categories = shared.opts.interrogate_clip_skip_categories cat_types = [] for filename in Path(self.content_dir).glob('*.txt'): cat_types.append(filename.stem) if filename.stem in self.skip_categories: continue m = re_topn.search(filename.stem) topn = 1 if m is None else int(m.group(1)) with open(filename, "r", encoding="utf8") as file: lines = [x.strip() for x in file.readlines()] self.loaded_categories.append(Category(name=filename.stem, topn=topn, items=lines)) return self.loaded_categories def create_fake_fairscale(self): class FakeFairscale: def checkpoint_wrapper(self): pass sys.modules["fairscale.nn.checkpoint.checkpoint_activations"] = FakeFairscale def load_blip_model(self): self.create_fake_fairscale() from repositories.blip import models # pylint: disable=unused-import from repositories.blip.models import blip import modules.modelloader as modelloader model_path = os.path.join(paths.models_path, "BLIP") download_name='model_base_caption_capfilt_large.pth', shared.log.debug(f'Model interrogate load: type=BLiP model={download_name} path={model_path}') files = modelloader.load_models( model_path=model_path, model_url='https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_caption_capfilt_large.pth', ext_filter=[".pth"], download_name=download_name, ) blip_model = blip.blip_decoder(pretrained=files[0], image_size=blip_image_eval_size, vit='base', med_config=os.path.join(paths.paths["BLIP"], "configs", "med_config.json")) # pylint: disable=c-extension-no-member blip_model.eval() return blip_model def load_clip_model(self): shared.log.debug(f'Model interrogate load: type=CLiP model={clip_model_name} path={shared.opts.clip_models_path}') import clip if self.running_on_cpu: model, preprocess = clip.load(clip_model_name, device="cpu", download_root=shared.opts.clip_models_path) else: model, preprocess = clip.load(clip_model_name, download_root=shared.opts.clip_models_path) model.eval() model = model.to(devices.device_interrogate) return model, preprocess def load(self): if self.blip_model is None: self.blip_model = self.load_blip_model() if not shared.opts.no_half and not self.running_on_cpu: self.blip_model = self.blip_model.half() self.blip_model = self.blip_model.to(devices.device_interrogate) if self.clip_model is None: self.clip_model, self.clip_preprocess = self.load_clip_model() if not shared.opts.no_half and not self.running_on_cpu: self.clip_model = self.clip_model.half() self.clip_model = self.clip_model.to(devices.device_interrogate) self.dtype = next(self.clip_model.parameters()).dtype def send_clip_to_ram(self): if not shared.opts.interrogate_keep_models_in_memory: if self.clip_model is not None: self.clip_model = self.clip_model.to(devices.cpu) def send_blip_to_ram(self): if not shared.opts.interrogate_keep_models_in_memory: if self.blip_model is not None: self.blip_model = self.blip_model.to(devices.cpu) def unload(self): self.send_clip_to_ram() self.send_blip_to_ram() devices.torch_gc() def rank(self, image_features, text_array, top_count=1): import clip devices.torch_gc() if shared.opts.interrogate_clip_dict_limit != 0: text_array = text_array[0:int(shared.opts.interrogate_clip_dict_limit)] top_count = min(top_count, len(text_array)) text_tokens = clip.tokenize(list(text_array), truncate=True).to(devices.device_interrogate) text_features = self.clip_model.encode_text(text_tokens).type(self.dtype) text_features /= text_features.norm(dim=-1, keepdim=True) similarity = torch.zeros((1, len(text_array))).to(devices.device_interrogate) for i in range(image_features.shape[0]): similarity += (100.0 * image_features[i].unsqueeze(0) @ text_features.T).softmax(dim=-1) similarity /= image_features.shape[0] top_probs, top_labels = similarity.cpu().topk(top_count, dim=-1) return [(text_array[top_labels[0][i].numpy()], (top_probs[0][i].numpy()*100)) for i in range(top_count)] def generate_caption(self, pil_image): gpu_image = transforms.Compose([ transforms.Resize((blip_image_eval_size, blip_image_eval_size), interpolation=InterpolationMode.BICUBIC), transforms.ToTensor(), transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) ])(pil_image).unsqueeze(0).type(self.dtype).to(devices.device_interrogate) with devices.inference_context(): caption = self.blip_model.generate(gpu_image, sample=False, num_beams=shared.opts.interrogate_clip_num_beams, min_length=shared.opts.interrogate_clip_min_length, max_length=shared.opts.interrogate_clip_max_length) return caption[0] def interrogate(self, pil_image): res = "" shared.state.begin('interrogate') try: if shared.backend == shared.Backend.ORIGINAL and (shared.cmd_opts.lowvram or shared.cmd_opts.medvram): lowvram.send_everything_to_cpu() devices.torch_gc() self.load() if isinstance(pil_image, list): pil_image = pil_image[0] if isinstance(pil_image, dict) and 'name' in pil_image: pil_image = Image.open(pil_image['name']) pil_image = pil_image.convert("RGB") caption = self.generate_caption(pil_image) self.send_blip_to_ram() devices.torch_gc() res = caption clip_image = self.clip_preprocess(pil_image).unsqueeze(0).type(self.dtype).to(devices.device_interrogate) with devices.inference_context(), devices.autocast(): image_features = self.clip_model.encode_image(clip_image).type(self.dtype) image_features /= image_features.norm(dim=-1, keepdim=True) for _name, topn, items in self.categories(): matches = self.rank(image_features, items, top_count=topn) for match, score in matches: if shared.opts.interrogate_return_ranks: res += f", ({match}:{score/100:.3f})" else: res += f", {match}" except Exception as e: errors.display(e, 'interrogate') res += "" self.unload() shared.state.end() return res # --------- interrrogate ui ci = None low_vram = False class BatchWriter: def __init__(self, folder): self.folder = folder self.csv, self.file = None, None def add(self, file, prompt): txt_file = os.path.splitext(file)[0] + ".txt" with open(os.path.join(self.folder, txt_file), 'w', encoding='utf-8') as f: f.write(prompt) def close(self): if self.file is not None: self.file.close() def get_clip_models(): import open_clip return ['/'.join(x) for x in open_clip.list_pretrained()] def load_interrogator(model): from clip_interrogator import Config, Interrogator global ci # pylint: disable=global-statement if ci is None: config = Config(device=devices.get_optimal_device(), cache_path=os.path.join(paths.models_path, 'Interrogator'), clip_model_name=model, quiet=True) if low_vram: config.apply_low_vram_defaults() shared.log.info(f'Interrogate load: config={config}') ci = Interrogator(config) elif model != ci.config.clip_model_name: ci.config.clip_model_name = model shared.log.info(f'Interrogate load: config={ci.config}') ci.load_clip_model() def unload_clip_model(): if ci is not None: shared.log.debug('Interrogate offload') ci.caption_model = ci.caption_model.to(devices.cpu) ci.clip_model = ci.clip_model.to(devices.cpu) ci.caption_offloaded = True ci.clip_offloaded = True devices.torch_gc() def interrogate(image, mode, caption=None): shared.log.info(f'Interrogate: image={image} mode={mode} config={ci.config}') if mode == 'best': prompt = ci.interrogate(image, caption=caption) elif mode == 'caption': prompt = ci.generate_caption(image) if caption is None else caption elif mode == 'classic': prompt = ci.interrogate_classic(image, caption=caption) elif mode == 'fast': prompt = ci.interrogate_fast(image, caption=caption) elif mode == 'negative': prompt = ci.interrogate_negative(image) else: raise RuntimeError(f"Unknown mode {mode}") return prompt def interrogate_image(image, model, mode): shared.state.begin() shared.state.job = 'interrogate' try: if shared.backend == shared.Backend.ORIGINAL and (shared.cmd_opts.lowvram or shared.cmd_opts.medvram): lowvram.send_everything_to_cpu() devices.torch_gc() load_interrogator(model) image = image.convert('RGB') shared.log.info(f'Interrogate: image={image} mode={mode} config={ci.config}') prompt = interrogate(image, mode) except Exception as e: prompt = f"Exception {type(e)}" shared.log.error(f'Interrogate: {e}') shared.state.end() return prompt def interrogate_batch(batch_files, batch_folder, batch_str, model, mode, write): files = [] if batch_files is not None: files += [f.name for f in batch_files] if batch_folder is not None: files += [f.name for f in batch_folder] if batch_str is not None and len(batch_str) > 0 and os.path.exists(batch_str) and os.path.isdir(batch_str): files += [os.path.join(batch_str, f) for f in os.listdir(batch_str) if f.lower().endswith(('.png', '.jpg', '.jpeg', '.webp'))] if len(files) == 0: shared.log.error('Interrogate batch no images') return '' shared.state.begin() shared.state.job = 'batch interrogate' prompts = [] try: if shared.backend == shared.Backend.ORIGINAL and (shared.cmd_opts.lowvram or shared.cmd_opts.medvram): lowvram.send_everything_to_cpu() devices.torch_gc() load_interrogator(model) shared.log.info(f'Interrogate batch: images={len(files)} mode={mode} config={ci.config}') captions = [] # first pass: generate captions for file in files: caption = "" try: if shared.state.interrupted: break image = Image.open(file).convert('RGB') caption = ci.generate_caption(image) except Exception as e: shared.log.error(f'Interrogate caption: {e}') finally: captions.append(caption) # second pass: interrogate if write: writer = BatchWriter(os.path.dirname(files[0])) for idx, file in enumerate(files): try: if shared.state.interrupted: break image = Image.open(file).convert('RGB') prompt = interrogate(image, mode, caption=captions[idx]) prompts.append(prompt) if write: writer.add(file, prompt) except OSError as e: shared.log.error(f'Interrogate batch: {e}') if write: writer.close() ci.config.quiet = False unload_clip_model() except Exception as e: shared.log.error(f'Interrogate batch: {e}') shared.state.end() return '\n\n'.join(prompts) def analyze_image(image, model): load_interrogator(model) image = image.convert('RGB') image_features = ci.image_to_features(image) top_mediums = ci.mediums.rank(image_features, 5) top_artists = ci.artists.rank(image_features, 5) top_movements = ci.movements.rank(image_features, 5) top_trendings = ci.trendings.rank(image_features, 5) top_flavors = ci.flavors.rank(image_features, 5) medium_ranks = dict(zip(top_mediums, ci.similarities(image_features, top_mediums))) artist_ranks = dict(zip(top_artists, ci.similarities(image_features, top_artists))) movement_ranks = dict(zip(top_movements, ci.similarities(image_features, top_movements))) trending_ranks = dict(zip(top_trendings, ci.similarities(image_features, top_trendings))) flavor_ranks = dict(zip(top_flavors, ci.similarities(image_features, top_flavors))) return medium_ranks, artist_ranks, movement_ranks, trending_ranks, flavor_ranks