import os import cv2 import torch import modules.face_restoration from modules import shared, devices, modelloader, errors from modules.paths import models_path # codeformer people made a choice to include modified basicsr library to their project which makes # it utterly impossible to use it alongside with other libraries that also use basicsr, like GFPGAN. # I am making a choice to include some files from codeformer to work around this issue. model_dir = "Codeformer" model_path = os.path.join(models_path, model_dir) model_url = 'https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth' have_codeformer = False codeformer = None def setup_model(dirname): try: if not os.path.exists(model_path): os.makedirs(model_path) except Exception: pass path = modules.paths.paths.get("CodeFormer", None) if path is None: return try: class FaceRestorerCodeFormer(modules.face_restoration.FaceRestoration): def name(self): return "CodeFormer" def __init__(self, dirname): self.net = None self.face_helper = None self.cmd_dir = dirname def create_models(self): from modules.postprocess.codeformer_arch import CodeFormer from facelib.utils.face_restoration_helper import FaceRestoreHelper from facelib.detection.retinaface import retinaface if self.net is not None and self.face_helper is not None: self.net.to(devices.device_codeformer) return self.net, self.face_helper model_paths = modelloader.load_models(model_path, model_url, self.cmd_dir, download_name='codeformer-v0.1.0.pth', ext_filter=['.pth']) if len(model_paths) != 0: ckpt_path = model_paths[0] else: shared.log.error(f"Model failed loading: type=CodeFormer model={model_path}") return None, None net = CodeFormer(dim_embd=512, codebook_size=1024, n_head=8, n_layers=9, connect_list=['32', '64', '128', '256']).to(devices.device_codeformer) checkpoint = torch.load(ckpt_path)['params_ema'] net.load_state_dict(checkpoint) net.eval() shared.log.info(f"Model loaded: type=CodeFormer model={ckpt_path}") if hasattr(retinaface, 'device'): retinaface.device = devices.device_codeformer face_helper = FaceRestoreHelper(1, face_size=512, crop_ratio=(1, 1), det_model='retinaface_resnet50', save_ext='png', use_parse=True, device=devices.device_codeformer) self.net = net self.face_helper = face_helper return net, face_helper def send_model_to(self, device): self.net.to(device) self.face_helper.face_det.to(device) # pylint: disable=no-member self.face_helper.face_parse.to(device) def restore(self, np_image, p=None, w=None): # pylint: disable=unused-argument from torchvision.transforms.functional import normalize from basicsr.utils import img2tensor, tensor2img np_image = np_image[:, :, ::-1] original_resolution = np_image.shape[0:2] self.create_models() if self.net is None or self.face_helper is None: return np_image self.send_model_to(devices.device_codeformer) self.face_helper.clean_all() self.face_helper.read_image(np_image) self.face_helper.get_face_landmarks_5(only_center_face=False, resize=640, eye_dist_threshold=5) self.face_helper.align_warp_face() for cropped_face in self.face_helper.cropped_faces: cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True) normalize(cropped_face_t, (0.5, 0.5, 0.5), (0.5, 0.5, 0.5), inplace=True) cropped_face_t = cropped_face_t.unsqueeze(0).to(devices.device_codeformer) try: with devices.inference_context(): output = self.net(cropped_face_t, w=w if w is not None else shared.opts.code_former_weight, adain=True)[0] # pylint: disable=not-callable restored_face = tensor2img(output, rgb2bgr=True, min_max=(-1, 1)) del output devices.torch_gc() except Exception as e: shared.log.error(f'CodeFormer error: {e}') restored_face = tensor2img(cropped_face_t, rgb2bgr=True, min_max=(-1, 1)) restored_face = restored_face.astype('uint8') self.face_helper.add_restored_face(restored_face) self.face_helper.get_inverse_affine(None) restored_img = self.face_helper.paste_faces_to_input_image() restored_img = restored_img[:, :, ::-1] if original_resolution != restored_img.shape[0:2]: restored_img = cv2.resize(restored_img, (0, 0), fx=original_resolution[1]/restored_img.shape[1], fy=original_resolution[0]/restored_img.shape[0], interpolation=cv2.INTER_LINEAR) self.face_helper.clean_all() if shared.opts.face_restoration_unload: self.send_model_to(devices.cpu) return restored_img global have_codeformer # pylint: disable=global-statement have_codeformer = True global codeformer # pylint: disable=global-statement codeformer = FaceRestorerCodeFormer(dirname) shared.face_restorers.append(codeformer) except Exception as e: errors.display(e, 'codeformer')