from PIL import Image import numpy as np import torch from rich.progress import Progress, TextColumn, BarColumn, TaskProgressColumn, TimeRemainingColumn, TimeElapsedColumn from modules import devices from modules.postprocess.scunet_model_arch import SCUNet as net from modules.shared import opts, log, console from modules.upscaler import Upscaler, compile_upscaler class UpscalerSCUNet(Upscaler): def __init__(self, dirname): self.name = "SCUNet" self.user_path = dirname super().__init__() self.scalers = self.find_scalers() self.models = {} def load_model(self, path: str): info = self.find_model(path) if info is None: return if self.models.get(info.local_data_path, None) is not None: log.debug(f"Upscaler cached: type={self.name} model={info.local_data_path}") model=self.models[info.local_data_path] else: model = net(in_nc=3, config=[4, 4, 4, 4, 4, 4, 4], dim=64) model.load_state_dict(torch.load(info.local_data_path), strict=True) model.eval() log.info(f"Upscaler loaded: type={self.name} model={info.local_data_path}") for _, v in model.named_parameters(): v.requires_grad = False model = model.to(devices.device) model = compile_upscaler(model) self.models[info.local_data_path] = model return model @staticmethod @torch.no_grad() def tiled_inference(img, model): # test the image tile by tile h, w = img.shape[2:] tile = opts.upscaler_tile_size tile_overlap = opts.upscaler_tile_overlap if tile == 0: return model(img) assert tile % 8 == 0, "tile size should be a multiple of window_size" sf = 1 stride = tile - tile_overlap h_idx_list = list(range(0, h - tile, stride)) + [h - tile] w_idx_list = list(range(0, w - tile, stride)) + [w - tile] E = torch.zeros(1, 3, h * sf, w * sf, dtype=img.dtype, device=devices.device) W = torch.zeros_like(E, dtype=devices.dtype, device=devices.device) with Progress(TextColumn('[cyan]{task.description}'), BarColumn(), TaskProgressColumn(), TimeRemainingColumn(), TimeElapsedColumn(), console=console) as progress: task = progress.add_task(description="Upscaling", total=len(h_idx_list) * len(w_idx_list)) for h_idx in h_idx_list: for w_idx in w_idx_list: in_patch = img[..., h_idx: h_idx + tile, w_idx: w_idx + tile] out_patch = model(in_patch) out_patch_mask = torch.ones_like(out_patch) E[ ..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf ].add_(out_patch) W[ ..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf ].add_(out_patch_mask) progress.update(task, advance=1, description="Upscaling") output = E.div_(W) return output def do_upscale(self, img: Image.Image, selected_file): devices.torch_gc() model = self.load_model(selected_file) if model is None: return img tile = opts.upscaler_tile_size h, w = img.height, img.width np_img = np.array(img) np_img = np_img[:, :, ::-1] # RGB to BGR np_img = np_img.transpose((2, 0, 1)) / 255 # HWC to CHW torch_img = torch.from_numpy(np_img).float().unsqueeze(0).to(devices.device) # type: ignore if tile > h or tile > w: _img = torch.zeros(1, 3, max(h, tile), max(w, tile), dtype=torch_img.dtype, device=torch_img.device) _img[:, :, :h, :w] = torch_img # pad image torch_img = _img torch_output = self.tiled_inference(torch_img, model).squeeze(0) torch_output = torch_output[:, :h * 1, :w * 1] # remove padding, if any np_output: np.ndarray = torch_output.float().cpu().clamp_(0, 1).numpy() del torch_img, torch_output devices.torch_gc() output = np_output.transpose((1, 2, 0)) # CHW to HWC output = output[:, :, ::-1] # BGR to RGB img = Image.fromarray((output * 255).astype(np.uint8)) if opts.upscaler_unload and selected_file in self.models: del self.models[selected_file] log.debug(f"Upscaler unloaded: type={self.name} model={selected_file}") devices.torch_gc(force=True) return img