import numpy as np import torch from PIL import Image from rich.progress import Progress, TextColumn, BarColumn, TaskProgressColumn, TimeRemainingColumn, TimeElapsedColumn from modules.postprocess.swinir_model_arch import SwinIR as net from modules.postprocess.swinir_model_arch_v2 import Swin2SR as net2 from modules import devices, script_callbacks, shared from modules.upscaler import Upscaler, compile_upscaler class UpscalerSwinIR(Upscaler): def __init__(self, dirname): self.name = "SwinIR" self.user_path = dirname super().__init__() self.scalers = self.find_scalers() self.models = {} def load_model(self, path, scale=4): info = self.find_model(path) if info is None: return if self.models.get(info.local_data_path, None) is not None: shared.log.debug(f"Upscaler cached: type={self.name} model={info.local_data_path}") return self.models[info.local_data_path] pretrained_model = torch.load(info.local_data_path) model_v2 = net2( upscale=scale, in_chans=3, img_size=64, window_size=8, img_range=1.0, depths=[6, 6, 6, 6, 6, 6], embed_dim=180, num_heads=[6, 6, 6, 6, 6, 6], mlp_ratio=2, upsampler="nearest+conv", resi_connection="1conv", ) model_v1 = net( upscale=scale, in_chans=3, img_size=64, window_size=8, img_range=1.0, depths=[6, 6, 6, 6, 6, 6, 6, 6, 6], embed_dim=240, num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8], mlp_ratio=2, upsampler="nearest+conv", resi_connection="3conv", ) for model in [model_v1, model_v2]: for param in ["params_ema", "params", None]: try: if param is not None: model.load_state_dict(pretrained_model[param], strict=True) else: model.load_state_dict(pretrained_model, strict=True) shared.log.info(f"Upscaler loaded: type={self.name} model={info.local_data_path} param={param}") model = compile_upscaler(model) self.models[info.local_data_path] = model return model except Exception as e: shared.log.error(f'Upscaler invalid parameters: type={self.name} model={info.local_data_path} {e}') return model def do_upscale(self, img, selected_model): model = self.load_model(selected_model) if model is None: return img model = model.to(devices.device, dtype=devices.dtype) img = upscale(img, model) if shared.opts.upscaler_unload and selected_model in self.models: del self.models[selected_model] shared.log.debug(f"Upscaler unloaded: type={self.name} model={selected_model}") devices.torch_gc(force=True) return img def upscale( img, model, tile=None, tile_overlap=None, window_size=8, scale=4, ): tile = tile or shared.opts.upscaler_tile_size tile_overlap = tile_overlap or shared.opts.upscaler_tile_overlap img = np.array(img) img = img[:, :, ::-1] img = np.moveaxis(img, 2, 0) / 255 img = torch.from_numpy(img).float() img = img.unsqueeze(0).to(devices.device, dtype=devices.dtype) with torch.no_grad(), devices.autocast(): _, _, h_old, w_old = img.size() h_pad = (h_old // window_size + 1) * window_size - h_old w_pad = (w_old // window_size + 1) * window_size - w_old img = torch.cat([img, torch.flip(img, [2])], 2)[:, :, : h_old + h_pad, :] img = torch.cat([img, torch.flip(img, [3])], 3)[:, :, :, : w_old + w_pad] output = inference(img, model, tile, tile_overlap, window_size, scale) output = output[..., : h_old * scale, : w_old * scale] output = output.data.squeeze().float().cpu().clamp_(0, 1).numpy() if output.ndim == 3: output = np.transpose( output[[2, 1, 0], :, :], (1, 2, 0) ) # CHW-RGB to HCW-BGR output = (output * 255.0).round().astype(np.uint8) # float32 to uint8 return Image.fromarray(output, "RGB") def inference(img, model, tile, tile_overlap, window_size, scale): # test the image tile by tile b, c, h, w = img.size() tile = min(tile, h, w) assert tile % window_size == 0, "tile size should be a multiple of window_size" sf = scale stride = tile - tile_overlap h_idx_list = list(range(0, h - tile, stride)) + [h - tile] w_idx_list = list(range(0, w - tile, stride)) + [w - tile] E = torch.zeros(b, c, h * sf, w * sf, dtype=devices.dtype, device=devices.device).type_as(img) W = torch.zeros_like(E, dtype=devices.dtype, device=devices.device) with Progress(TextColumn('[cyan]{task.description}'), BarColumn(), TaskProgressColumn(), TimeRemainingColumn(), TimeElapsedColumn(), console=shared.console) as progress: task = progress.add_task(description="Upscaling Initializing", total=len(h_idx_list) * len(w_idx_list)) for h_idx in h_idx_list: for w_idx in w_idx_list: if shared.state.interrupted or shared.state.skipped: break in_patch = img[..., h_idx: h_idx + tile, w_idx: w_idx + tile] out_patch = model(in_patch) out_patch_mask = torch.ones_like(out_patch) E[ ..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf ].add_(out_patch) W[ ..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf ].add_(out_patch_mask) progress.update(task, advance=1, description="Upscaling") output = E.div_(W) return output