"""
Additional params for StableVideoDiffusion
"""
import os
import torch
import gradio as gr
from modules import scripts, processing, shared, sd_models, images, modelloader
models = {
"SVD 1.0": "stabilityai/stable-video-diffusion-img2vid",
"SVD XT 1.0": "stabilityai/stable-video-diffusion-img2vid-xt",
"SVD XT 1.1": "stabilityai/stable-video-diffusion-img2vid-xt-1-1",
}
class Script(scripts.Script):
def title(self):
return 'Stable Video Diffusion'
def show(self, is_img2img):
return is_img2img if shared.backend == shared.Backend.DIFFUSERS else False
# return signature is array of gradio components
def ui(self, _is_img2img):
def video_type_change(video_type):
return [
gr.update(visible=video_type != 'None'),
gr.update(visible=video_type == 'GIF' or video_type == 'PNG'),
gr.update(visible=video_type == 'MP4'),
gr.update(visible=video_type == 'MP4'),
]
with gr.Row():
gr.HTML('  Stable Video Diffusion
')
with gr.Row():
model = gr.Dropdown(label='Model', choices=list(models), value=list(models)[0])
with gr.Row():
num_frames = gr.Slider(label='Frames', minimum=1, maximum=50, step=1, value=14)
min_guidance_scale = gr.Slider(label='Min guidance', minimum=0.0, maximum=10.0, step=0.1, value=1.0)
max_guidance_scale = gr.Slider(label='Max guidance', minimum=0.0, maximum=10.0, step=0.1, value=3.0)
with gr.Row():
decode_chunk_size = gr.Slider(label='Decode chunks', minimum=1, maximum=25, step=1, value=6)
motion_bucket_id = gr.Slider(label='Motion level', minimum=0, maximum=1, step=0.05, value=0.5)
noise_aug_strength = gr.Slider(label='Noise strength', minimum=0.0, maximum=1.0, step=0.01, value=0.1)
with gr.Row():
override_resolution = gr.Checkbox(label='Override resolution', value=True)
with gr.Row():
video_type = gr.Dropdown(label='Video file', choices=['None', 'GIF', 'PNG', 'MP4'], value='None')
duration = gr.Slider(label='Duration', minimum=0.25, maximum=10, step=0.25, value=2, visible=False)
with gr.Row():
gif_loop = gr.Checkbox(label='Loop', value=True, visible=False)
mp4_pad = gr.Slider(label='Pad frames', minimum=0, maximum=24, step=1, value=1, visible=False)
mp4_interpolate = gr.Slider(label='Interpolate frames', minimum=0, maximum=24, step=1, value=0, visible=False)
video_type.change(fn=video_type_change, inputs=[video_type], outputs=[duration, gif_loop, mp4_pad, mp4_interpolate])
return [model, num_frames, override_resolution, min_guidance_scale, max_guidance_scale, decode_chunk_size, motion_bucket_id, noise_aug_strength, video_type, duration, gif_loop, mp4_pad, mp4_interpolate]
def run(self, p: processing.StableDiffusionProcessing, model, num_frames, override_resolution, min_guidance_scale, max_guidance_scale, decode_chunk_size, motion_bucket_id, noise_aug_strength, video_type, duration, gif_loop, mp4_pad, mp4_interpolate): # pylint: disable=arguments-differ, unused-argument
image = getattr(p, 'init_images', None)
if image is None or len(image) == 0:
shared.log.error('SVD: no init_images')
return None
else:
image = image[0]
# load/download model on-demand
model_path = models[model]
model_name = os.path.basename(model_path)
has_checkpoint = sd_models.get_closet_checkpoint_match(model_path)
if has_checkpoint is None:
shared.log.error(f'SVD: no checkpoint for {model_name}')
modelloader.load_reference(model_path, variant='fp16')
c = shared.sd_model.__class__.__name__
model_loaded = shared.sd_model.sd_checkpoint_info.model_name if shared.sd_model is not None else None
if model_name != model_loaded or c != 'StableVideoDiffusionPipeline':
shared.opts.sd_model_checkpoint = model_path
sd_models.reload_model_weights()
# set params
if override_resolution:
p.width = 1024
p.height = 576
image = images.resize_image(resize_mode=2, im=image, width=p.width, height=p.height, upscaler_name=None, output_type='pil')
p.ops.append('svd')
p.do_not_save_grid = True
p.init_images = [image]
p.sampler_name = 'Default' # svd does not support non-default sampler
p.task_args['output_type'] = 'pil'
p.task_args['generator'] = torch.manual_seed(p.seed) # svd does not support gpu based generator
p.task_args['image'] = image
p.task_args['width'] = p.width
p.task_args['height'] = p.height
p.task_args['num_frames'] = num_frames
p.task_args['decode_chunk_size'] = decode_chunk_size
p.task_args['motion_bucket_id'] = round(255 * motion_bucket_id)
p.task_args['noise_aug_strength'] = noise_aug_strength
p.task_args['num_inference_steps'] = p.steps
p.task_args['min_guidance_scale'] = min_guidance_scale
p.task_args['max_guidance_scale'] = max_guidance_scale
shared.log.debug(f'SVD: args={p.task_args}')
# run processing
processed = processing.process_images(p)
if video_type != 'None':
images.save_video(p, filename=None, images=processed.images, video_type=video_type, duration=duration, loop=gif_loop, pad=mp4_pad, interpolate=mp4_interpolate)
return processed