Spaces:
Runtime error
Runtime error
bipin
commited on
Commit
•
cae4936
1
Parent(s):
52cd6f3
added files
Browse files- app.py +43 -0
- gpt2_story_gen.py +11 -0
- prefix_clip.py +280 -0
- requirements.txt +8 -0
app.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
from prefix_clip import download_pretrained_model, generate_caption
|
4 |
+
from gpt2_story_gen import generate_story
|
5 |
+
|
6 |
+
|
7 |
+
def main(pil_image, genre, model="Conceptual", use_beam_search=True):
|
8 |
+
model_file = "pretrained_weights.pt"
|
9 |
+
|
10 |
+
download_pretrained_model(model.lower(), file_to_save=model_file)
|
11 |
+
|
12 |
+
image_caption = generate_caption(
|
13 |
+
model_path=model_file,
|
14 |
+
pil_image=pil_image,
|
15 |
+
use_beam_search=use_beam_search,
|
16 |
+
)
|
17 |
+
story = generate_story(image_caption, genre.lower())
|
18 |
+
return story
|
19 |
+
|
20 |
+
|
21 |
+
if __name__ == "__main__":
|
22 |
+
interface = gr.Interface(
|
23 |
+
main,
|
24 |
+
title="image2story",
|
25 |
+
inputs=[
|
26 |
+
gr.inputs.Image(type="pil", source="upload", label="Input"),
|
27 |
+
gr.inputs.Dropdown(
|
28 |
+
type="value",
|
29 |
+
label="Story genre",
|
30 |
+
choices=[
|
31 |
+
"superhero",
|
32 |
+
"action",
|
33 |
+
"drama",
|
34 |
+
"horror",
|
35 |
+
"thriller",
|
36 |
+
"sci_fi",
|
37 |
+
],
|
38 |
+
),
|
39 |
+
],
|
40 |
+
outputs=gr.outputs.Textbox(label="Generated story"),
|
41 |
+
enable_queue=True,
|
42 |
+
)
|
43 |
+
interface.launch()
|
gpt2_story_gen.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
|
3 |
+
|
4 |
+
def generate_story(image_caption, genre):
|
5 |
+
story_gen = pipeline("text-generation", "pranavpsv/genre-story-generator-v2")
|
6 |
+
|
7 |
+
input = f"<BOS> <{genre}> {image_caption}"
|
8 |
+
story = story_gen(input)[0]["generated_text"]
|
9 |
+
story = f"{story.strip(input)}"
|
10 |
+
|
11 |
+
return story
|
prefix_clip.py
ADDED
@@ -0,0 +1,280 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import clip
|
2 |
+
import os
|
3 |
+
from torch import nn
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import torch.nn.functional as nnf
|
7 |
+
import sys
|
8 |
+
import gdown
|
9 |
+
from typing import Tuple, List, Union, Optional
|
10 |
+
from transformers import (
|
11 |
+
GPT2Tokenizer,
|
12 |
+
GPT2LMHeadModel,
|
13 |
+
AdamW,
|
14 |
+
get_linear_schedule_with_warmup,
|
15 |
+
)
|
16 |
+
from tqdm import tqdm, trange
|
17 |
+
from google.colab import files
|
18 |
+
import skimage.io as io
|
19 |
+
import PIL.Image
|
20 |
+
from IPython.display import Image
|
21 |
+
|
22 |
+
|
23 |
+
N = type(None)
|
24 |
+
V = np.array
|
25 |
+
ARRAY = np.ndarray
|
26 |
+
ARRAYS = Union[Tuple[ARRAY, ...], List[ARRAY]]
|
27 |
+
VS = Union[Tuple[V, ...], List[V]]
|
28 |
+
VN = Union[V, N]
|
29 |
+
VNS = Union[VS, N]
|
30 |
+
T = torch.Tensor
|
31 |
+
TS = Union[Tuple[T, ...], List[T]]
|
32 |
+
TN = Optional[T]
|
33 |
+
TNS = Union[Tuple[TN, ...], List[TN]]
|
34 |
+
TSN = Optional[TS]
|
35 |
+
TA = Union[T, ARRAY]
|
36 |
+
|
37 |
+
D = torch.device
|
38 |
+
CPU = torch.device("cpu")
|
39 |
+
|
40 |
+
|
41 |
+
def download_pretrained_model(model, file_to_save):
|
42 |
+
conceptual_wt = "14pXWwB4Zm82rsDdvbGguLfx9F8aM7ovT"
|
43 |
+
coco_wt = "1IdaBtMSvtyzF0ByVaBHtvM0JYSXRExRX"
|
44 |
+
|
45 |
+
# download pretrained weights
|
46 |
+
if model == "coco":
|
47 |
+
url = f"https://drive.google.com/uc?id={coco_wt}"
|
48 |
+
elif model == "conceptual":
|
49 |
+
url = f"https://drive.google.com/uc?id={conceptual_wt}"
|
50 |
+
gdown.download(url, file_to_save, quiet=False)
|
51 |
+
|
52 |
+
|
53 |
+
class MLP(nn.Module):
|
54 |
+
def forward(self, x: T) -> T:
|
55 |
+
return self.model(x)
|
56 |
+
|
57 |
+
def __init__(self, sizes: Tuple[int, ...], bias=True, act=nn.Tanh):
|
58 |
+
super(MLP, self).__init__()
|
59 |
+
layers = []
|
60 |
+
for i in range(len(sizes) - 1):
|
61 |
+
layers.append(nn.Linear(sizes[i], sizes[i + 1], bias=bias))
|
62 |
+
if i < len(sizes) - 2:
|
63 |
+
layers.append(act())
|
64 |
+
self.model = nn.Sequential(*layers)
|
65 |
+
|
66 |
+
|
67 |
+
class ClipCaptionModel(nn.Module):
|
68 |
+
def get_dummy_token(self, batch_size: int, device: D) -> T:
|
69 |
+
return torch.zeros(
|
70 |
+
batch_size, self.prefix_length, dtype=torch.int64, device=device
|
71 |
+
)
|
72 |
+
|
73 |
+
def forward(
|
74 |
+
self, tokens: T, prefix: T, mask: Optional[T] = None, labels: Optional[T] = None
|
75 |
+
):
|
76 |
+
embedding_text = self.gpt.transformer.wte(tokens)
|
77 |
+
prefix_projections = self.clip_project(prefix).view(
|
78 |
+
-1, self.prefix_length, self.gpt_embedding_size
|
79 |
+
)
|
80 |
+
# print(embedding_text.size()) #torch.Size([5, 67, 768])
|
81 |
+
# print(prefix_projections.size()) #torch.Size([5, 1, 768])
|
82 |
+
embedding_cat = torch.cat((prefix_projections, embedding_text), dim=1)
|
83 |
+
if labels is not None:
|
84 |
+
dummy_token = self.get_dummy_token(tokens.shape[0], tokens.device)
|
85 |
+
labels = torch.cat((dummy_token, tokens), dim=1)
|
86 |
+
out = self.gpt(inputs_embeds=embedding_cat, labels=labels, attention_mask=mask)
|
87 |
+
return out
|
88 |
+
|
89 |
+
def __init__(self, prefix_length: int, prefix_size: int = 512):
|
90 |
+
super(ClipCaptionModel, self).__init__()
|
91 |
+
self.prefix_length = prefix_length
|
92 |
+
self.gpt = GPT2LMHeadModel.from_pretrained("gpt2")
|
93 |
+
self.gpt_embedding_size = self.gpt.transformer.wte.weight.shape[1]
|
94 |
+
if prefix_length > 10: # not enough memory
|
95 |
+
self.clip_project = nn.Linear(
|
96 |
+
prefix_size, self.gpt_embedding_size * prefix_length
|
97 |
+
)
|
98 |
+
else:
|
99 |
+
self.clip_project = MLP(
|
100 |
+
(
|
101 |
+
prefix_size,
|
102 |
+
(self.gpt_embedding_size * prefix_length) // 2,
|
103 |
+
self.gpt_embedding_size * prefix_length,
|
104 |
+
)
|
105 |
+
)
|
106 |
+
|
107 |
+
|
108 |
+
class ClipCaptionPrefix(ClipCaptionModel):
|
109 |
+
def parameters(self, recurse: bool = True):
|
110 |
+
return self.clip_project.parameters()
|
111 |
+
|
112 |
+
def train(self, mode: bool = True):
|
113 |
+
super(ClipCaptionPrefix, self).train(mode)
|
114 |
+
self.gpt.eval()
|
115 |
+
return self
|
116 |
+
|
117 |
+
|
118 |
+
def generate_beam(
|
119 |
+
model,
|
120 |
+
tokenizer,
|
121 |
+
beam_size: int = 5,
|
122 |
+
prompt=None,
|
123 |
+
embed=None,
|
124 |
+
entry_length=67,
|
125 |
+
temperature=1.0,
|
126 |
+
stop_token: str = ".",
|
127 |
+
):
|
128 |
+
|
129 |
+
model.eval()
|
130 |
+
stop_token_index = tokenizer.encode(stop_token)[0]
|
131 |
+
tokens = None
|
132 |
+
scores = None
|
133 |
+
device = next(model.parameters()).device
|
134 |
+
seq_lengths = torch.ones(beam_size, device=device)
|
135 |
+
is_stopped = torch.zeros(beam_size, device=device, dtype=torch.bool)
|
136 |
+
with torch.no_grad():
|
137 |
+
if embed is not None:
|
138 |
+
generated = embed
|
139 |
+
else:
|
140 |
+
if tokens is None:
|
141 |
+
tokens = torch.tensor(tokenizer.encode(prompt))
|
142 |
+
tokens = tokens.unsqueeze(0).to(device)
|
143 |
+
generated = model.gpt.transformer.wte(tokens)
|
144 |
+
for i in range(entry_length):
|
145 |
+
outputs = model.gpt(inputs_embeds=generated)
|
146 |
+
logits = outputs.logits
|
147 |
+
logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
|
148 |
+
logits = logits.softmax(-1).log()
|
149 |
+
if scores is None:
|
150 |
+
scores, next_tokens = logits.topk(beam_size, -1)
|
151 |
+
generated = generated.expand(beam_size, *generated.shape[1:])
|
152 |
+
next_tokens, scores = next_tokens.permute(1, 0), scores.squeeze(0)
|
153 |
+
if tokens is None:
|
154 |
+
tokens = next_tokens
|
155 |
+
else:
|
156 |
+
tokens = tokens.expand(beam_size, *tokens.shape[1:])
|
157 |
+
tokens = torch.cat((tokens, next_tokens), dim=1)
|
158 |
+
else:
|
159 |
+
logits[is_stopped] = -float(np.inf)
|
160 |
+
logits[is_stopped, 0] = 0
|
161 |
+
scores_sum = scores[:, None] + logits
|
162 |
+
seq_lengths[~is_stopped] += 1
|
163 |
+
scores_sum_average = scores_sum / seq_lengths[:, None]
|
164 |
+
scores_sum_average, next_tokens = scores_sum_average.view(-1).topk(
|
165 |
+
beam_size, -1
|
166 |
+
)
|
167 |
+
next_tokens_source = next_tokens // scores_sum.shape[1]
|
168 |
+
seq_lengths = seq_lengths[next_tokens_source]
|
169 |
+
next_tokens = next_tokens % scores_sum.shape[1]
|
170 |
+
next_tokens = next_tokens.unsqueeze(1)
|
171 |
+
tokens = tokens[next_tokens_source]
|
172 |
+
tokens = torch.cat((tokens, next_tokens), dim=1)
|
173 |
+
generated = generated[next_tokens_source]
|
174 |
+
scores = scores_sum_average * seq_lengths
|
175 |
+
is_stopped = is_stopped[next_tokens_source]
|
176 |
+
next_token_embed = model.gpt.transformer.wte(next_tokens.squeeze()).view(
|
177 |
+
generated.shape[0], 1, -1
|
178 |
+
)
|
179 |
+
generated = torch.cat((generated, next_token_embed), dim=1)
|
180 |
+
is_stopped = is_stopped + next_tokens.eq(stop_token_index).squeeze()
|
181 |
+
if is_stopped.all():
|
182 |
+
break
|
183 |
+
scores = scores / seq_lengths
|
184 |
+
output_list = tokens.cpu().numpy()
|
185 |
+
output_texts = [
|
186 |
+
tokenizer.decode(output[: int(length)])
|
187 |
+
for output, length in zip(output_list, seq_lengths)
|
188 |
+
]
|
189 |
+
order = scores.argsort(descending=True)
|
190 |
+
output_texts = [output_texts[i] for i in order]
|
191 |
+
return output_texts
|
192 |
+
|
193 |
+
|
194 |
+
def generate2(
|
195 |
+
model,
|
196 |
+
tokenizer,
|
197 |
+
tokens=None,
|
198 |
+
prompt=None,
|
199 |
+
embed=None,
|
200 |
+
entry_count=1,
|
201 |
+
entry_length=67, # maximum number of words
|
202 |
+
top_p=0.8,
|
203 |
+
temperature=1.0,
|
204 |
+
stop_token: str = ".",
|
205 |
+
):
|
206 |
+
model.eval()
|
207 |
+
generated_num = 0
|
208 |
+
generated_list = []
|
209 |
+
stop_token_index = tokenizer.encode(stop_token)[0]
|
210 |
+
filter_value = -float("Inf")
|
211 |
+
device = next(model.parameters()).device
|
212 |
+
|
213 |
+
with torch.no_grad():
|
214 |
+
|
215 |
+
for entry_idx in trange(entry_count):
|
216 |
+
if embed is not None:
|
217 |
+
generated = embed
|
218 |
+
else:
|
219 |
+
if tokens is None:
|
220 |
+
tokens = torch.tensor(tokenizer.encode(prompt))
|
221 |
+
tokens = tokens.unsqueeze(0).to(device)
|
222 |
+
|
223 |
+
generated = model.gpt.transformer.wte(tokens)
|
224 |
+
|
225 |
+
for i in range(entry_length):
|
226 |
+
|
227 |
+
outputs = model.gpt(inputs_embeds=generated)
|
228 |
+
logits = outputs.logits
|
229 |
+
logits = logits[:, -1, :] / (temperature if temperature > 0 else 1.0)
|
230 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
231 |
+
cumulative_probs = torch.cumsum(
|
232 |
+
nnf.softmax(sorted_logits, dim=-1), dim=-1
|
233 |
+
)
|
234 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
235 |
+
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[
|
236 |
+
..., :-1
|
237 |
+
].clone()
|
238 |
+
sorted_indices_to_remove[..., 0] = 0
|
239 |
+
|
240 |
+
indices_to_remove = sorted_indices[sorted_indices_to_remove]
|
241 |
+
logits[:, indices_to_remove] = filter_value
|
242 |
+
next_token = torch.argmax(logits, -1).unsqueeze(0)
|
243 |
+
next_token_embed = model.gpt.transformer.wte(next_token)
|
244 |
+
if tokens is None:
|
245 |
+
tokens = next_token
|
246 |
+
else:
|
247 |
+
tokens = torch.cat((tokens, next_token), dim=1)
|
248 |
+
generated = torch.cat((generated, next_token_embed), dim=1)
|
249 |
+
if stop_token_index == next_token.item():
|
250 |
+
break
|
251 |
+
|
252 |
+
output_list = list(tokens.squeeze().cpu().numpy())
|
253 |
+
output_text = tokenizer.decode(output_list)
|
254 |
+
generated_list.append(output_text)
|
255 |
+
|
256 |
+
return generated_list[0]
|
257 |
+
|
258 |
+
|
259 |
+
def generate_caption(model_path, pil_image, use_beam_search):
|
260 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
261 |
+
clip_model, preprocess = clip.load("ViT-B/32", device=device, jit=False)
|
262 |
+
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
263 |
+
|
264 |
+
prefix_length = 10
|
265 |
+
|
266 |
+
model = ClipCaptionModel(prefix_length)
|
267 |
+
model.load_state_dict(torch.load(model_path, map_location=CPU))
|
268 |
+
model = model.eval()
|
269 |
+
model = model.to(device)
|
270 |
+
|
271 |
+
image = preprocess(pil_image).unsqueeze(0).to(device)
|
272 |
+
with torch.no_grad():
|
273 |
+
prefix = clip_model.encode_image(image).to(device, dtype=torch.float32)
|
274 |
+
prefix_embed = model.clip_project(prefix).reshape(1, prefix_length, -1)
|
275 |
+
if use_beam_search:
|
276 |
+
image_caption = generate_beam(model, tokenizer, embed=prefix_embed)[0]
|
277 |
+
else:
|
278 |
+
image_caption = generate2(model, tokenizer, embed=prefix_embed)
|
279 |
+
|
280 |
+
return image_caption
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
numpy
|
3 |
+
gdown
|
4 |
+
transformers
|
5 |
+
tqdm
|
6 |
+
Pillow
|
7 |
+
scikit-image
|
8 |
+
git+https://github.com/openai/CLIP.git
|