File size: 9,080 Bytes
dbb07a8
 
 
 
12e9206
dbb07a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12e9206
dbb07a8
 
 
 
12e9206
dbb07a8
12e9206
 
dbb07a8
12e9206
 
 
 
 
dbb07a8
 
 
08500ba
 
 
dbb07a8
08500ba
 
dbb07a8
 
 
 
 
 
 
 
 
12e9206
dbb07a8
12e9206
 
 
 
 
 
 
 
dbb07a8
 
12e9206
 
dbb07a8
 
 
12e9206
 
 
dbb07a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89f7bfd
dbb07a8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import cv2
from transformers import ViTImageProcessor, ViTForImageClassification, AutoModelForImageClassification, AutoImageProcessor
import torch 
import numpy as np
import face_recognition

torch.backends.cudnn.benchmark = True

import urllib.request
path = 'https://raw.githubusercontent.com/opencv/opencv/master/data/haarcascades/haarcascade_frontalface_default.xml'
urllib.request.urlretrieve(path, path.split('/')[-1])

face_cascade = cv2.CascadeClassifier('./haarcascade_frontalface_default.xml')

class Base:
    size = 224
    scale = 1. / 255.
    mean = np.array( [ .5 ] * 3 ).reshape( 1, 1, 1, -1)
    std  = np.array( [ .5 ] * 3 ).reshape( 1, 1, 1, -1)
    resample = 2
    
class ethnicityConfig(Base):
    size = 384
    
class maskConfig(Base):
    resample = 3
    mean = np.array( [ .485 ] * 3 ).reshape( 1, 1, 1, -1)
    std  = np.array( [ .229 ] * 3 ).reshape( 1, 1, 1, -1)


AGE = "nateraw/vit-age-classifier"
GENDER = 'rizvandwiki/gender-classification-2'
ETHNICITY = 'cledoux42/Ethnicity_Test_v003'
MASK = 'DamarJati/Face-Mask-Detection'
BLUR = 'WT-MM/vit-base-blur'
BEARD = 'dima806/beard_face_image_detection'


device = 'cuda' if torch.cuda.is_available() else 'cpu'
# base_processor = ViTImageProcessor.from_pretrained( global_path + 'base_processor' )
age_model      = ViTForImageClassification.from_pretrained( AGE ).to(device)
gender_model   = ViTForImageClassification.from_pretrained( GENDER ).to(device)
beard_model    = ViTForImageClassification.from_pretrained( BEARD ).to(device)
blur_model     = ViTForImageClassification.from_pretrained( BLUR ).to(device)

# ethnicity_precessor = ViTImageProcessor.from_pretrained( global_path + 'ethnicity' )
ethnicity_model= ViTForImageClassification.from_pretrained( ETHNICITY ).to(device)

# mask_processor = ViTImageProcessor.from_pretrained( global_path + 'mask' )
mask_model     = AutoModelForImageClassification.from_pretrained( MASK ).to(device)


from PIL import Image
def normalize( data, mean, std ): # (batchs, nchannels, height, width)
    data =  (data - mean  ) / std
    return data.astype(np.float32)

def resize( image, size = 224, resample = 2  ):
#     if isinstance(iamge, np.ndarray):
#         image = Image.fromarray( image, mode = 'RGB' )
    
    image = image.resize( (size, size), resample = resample )
    
    return np.array( image )

def rescale( data, scale = Base.scale ):
    return data * scale

# resize 
# rescale
# normalize

def ParallelBatchsPredict( data, MODELS, nbatchs = 16 ):
    
    total = data.shape[0]
    # for change channel axis to first format
    data = np.transpose( data, ( 0, 3, 1, 2 ) )
    count = 0
    batchs = [ [] for i in range(len(MODELS)) ]
    for i in range( 0, total, nbatchs ):
        batch = data[i:i+nbatchs]
        count += batch.shape[0]
        with torch.no_grad():
            batch = torch.from_numpy( batch ).to(device)
            for _, model in enumerate(MODELS):
                logits = model( batch ).logits.softmax(1).argmax(1).tolist()
                for x in logits:
                    batchs[_].append( model.config.id2label[ x ] )

    assert count == total
    return batchs
# model arrange
# age 
# gender
# blur
# beard
# changle processor
# Ethnicity
# change processor
# Mask
def AnalysisFeatures(rawFaces): # list[ PIL.Image ]
    
    if len(rawFaces) == 0:
        return [ [] ]* 6
    baseProcessed = np.array([ resize(x, size = Base.size, resample = Base.resample ) for x in  rawFaces])
    baseProcessed = rescale( baseProcessed )
    baseProcessed = normalize( baseProcessed, Base.mean, Base.std )
    
    ages, genders, beards, blurs = ParallelBatchsPredict(baseProcessed,  [age_model, gender_model, beard_model, blur_model]  )
    
    EthncityProcessed = np.array([ resize(x, size = ethnicityConfig.size, resample = ethnicityConfig.resample ) for x in  rawFaces])
    EthncityProcessed = rescale( EthncityProcessed )
    EthncityProcessed = normalize( EthncityProcessed, ethnicityConfig.mean, ethnicityConfig.std )
    
    ethncities = ParallelBatchsPredict(EthncityProcessed, [ethnicity_model])[0]
    
    
    MaskProcessed = np.array([ resize(x, size = maskConfig.size, resample = maskConfig.resample ) for x in  rawFaces])
    MaskProcessed = rescale( MaskProcessed )
    MaskProcessed = normalize( MaskProcessed, maskConfig.mean, maskConfig.std )
    
    masks = ParallelBatchsPredict(MaskProcessed, [mask_model])[0] 
    
    beards = [True if beard == 'Beard' else False for beard in beards]
    blurs  = [True if blur == 'blurry' else False for blur in blurs]
    masks  = [True if mask == 'WithMask' else False for mask in masks]
    
    return ages, genders, beards, blurs, ethncities, masks


import gradio as gr

def frameWrapper( facesCo, ages, genders, beards, blurs, ethncities, masks ):
    return { 'identifiedPersonCount': len(facesCo), 'value': [ { 'coordinate': { 'x': x, 'y': y, 'h': h, 'w':w }, 'ageGroup': age, 'gender': gender, 'beardPresent':beard, 'blurOccur': blur, 'ethncity': ethncity, 'maskPresent': mask } for (x, y, w, h), age, gender, beard, blur, ethncity, mask in zip( facesCo, ages, genders, beards, blurs, ethncities, masks ) ] }

def postProcessed( rawfaces, maximunSize, minSize = 30 ):
    faces = []
    for (x, y, w, h) in rawfaces:
        x1 = x if x<maximunSize[0] else maximunSize[0]
        y1 = y if y<maximunSize[1] else maximunSize[1]
        x2 = w+x if w+x<maximunSize[0] else maximunSize[0]
        y2 = h+y if h+y<maximunSize[1] else maximunSize[1]
        
        if x2-x1 > minSize and y2-y1 >minSize:
            faces.append( (x, y, w, h) )
    return faces
def image_inference(image):

    
    if sum(image.shape) == 0:
        return { 'ErrorFound': 'ImageNotFound' }
    # Convert into grayscale
    # gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    # Detect faces
    # rawfaces = face_cascade.detectMultiScale(gray, 1.05, 5, minSize = (30, 30))
    # image = np.asarray( image )
    # Draw rectangle around the faces
    # rawfaces = postProcessed( rawfaces, image.shape[:2] )
    
    rawfaces = face_recognition.face_locations( image , model="cnn")
    faces = [ image[top:bottom, left:right].copy() for (top, left, bottom, right) in rawfaces ]
    # faces = [ image[x:w+x, y:h+y].copy() for (x, y, w, h) in rawfaces ]
    faces = [ Image.fromarray(x, mode = 'RGB') for x in faces ]
    ages, genders, beards, blurs, ethncities, masks = AnalysisFeatures( faces )

    annotatedImage = image.copy()
    for (top, left, bottom, right) in rawfaces:
        cv2.rectangle(annotatedImage, (top, left), (left, right), (255, 0, 0), 5)

    return Image.fromarray(annotatedImage, mode = 'RGB'), frameWrapper( rawfaces, ages, genders, beards, blurs, ethncities, masks )
    # return frameWrapper( rawfaces, ages, genders, beards, blurs, ethncities, masks )
def video_inference(video_path):
    
    global_facesCo = []
    global_faces = []
    cap = cv2.VideoCapture(video_path)
    frameCount = 0
    while(cap.isOpened()):
        _, img = cap.read()
        
        # try:
        # Convert into grayscale
            # gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        # except:
            # break
        # Detect faces
        # rawfaces = face_cascade.detectMultiScale(gray, 1.05, 6, minSize = (30, 30))
        try:
            image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
            image = np.asarray( image )
        except:
            break
        # rawfaces = postProcessed( rawfaces, image.shape[:2] )
        rawfaces = face_recognition.face_locations( image , model="cnn")
        # Draw rectangle around the faces
        # https://stackoverflow.com/questions/15589517/how-to-crop-an-image-in-opencv-using-python for fliping axis 
        global_facesCo.append( rawfaces )
        for (top, left, bottom, right) in rawfaces:
            # face = image[x:w+x, y:h+y].copy()
            face = image[top:bottom, left:right].copy()
            global_faces.append(Image.fromarray( face , mode = 'RGB') ) 
    
    ages, genders, beards, blurs, ethncities, masks = AnalysisFeatures( global_faces )
    
    total_extraction = []
    for facesCo in global_facedsCo:
        length = len(facesCo)
        
        total_extraction.append( frameWrapper( facesCo, ages[:length], genders[:length], beards[:length], blurs[:length], ethncities[:length], masks[:length]  ) )
        
        ages, genders, beards, blurs, ethncities, masks = ages[length:], genders[length:], beards[length:], blurs[length:], ethncities[length:], masks[length:]
    return total_extraction

css = """
    .outputJSON{
        overflow: scroll;
    }
    """
imageHander = gr.Interface( fn = image_inference, inputs = gr.Image(type="numpy", sources = 'upload'), outputs = gr.JSON(elem_classes = 'outputJSON'), css = css )
videoHander = gr.Interface( fn = video_inference, inputs = gr.Video(sources = 'upload', max_length = 30, include_audio = False), outputs = 'json' )
demo = gr.TabbedInterface( [imageHander, videoHander], tab_names = [ 'Image-to-Features', 'Video-to-Features' ], title = 'Facial Feature Extraction' )

demo.launch()