multimodalart HF staff commited on
Commit
3f0a0e5
1 Parent(s): bc0adb1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -3
app.py CHANGED
@@ -3,20 +3,20 @@ import numpy as np
3
  import random
4
  import spaces
5
  import torch
6
- from diffusers import FluxPipeline, FluxTransformer2DModel,FlowMatchEulerDiscreteScheduler, AutoencoderKL
7
  from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
8
 
9
  dtype = torch.bfloat16
10
  device = "cuda" if torch.cuda.is_available() else "cpu"
11
 
12
- pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16, revision="refs/pr/3").to("cpu")
13
 
14
  MAX_SEED = np.iinfo(np.int32).max
15
  MAX_IMAGE_SIZE = 2048
16
 
17
  @spaces.GPU(duration=190)
18
  def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
19
- pipe = FluxPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16, revision="refs/pr/3").to("cuda")
20
  if randomize_seed:
21
  seed = random.randint(0, MAX_SEED)
22
  generator = torch.Generator().manual_seed(seed)
 
3
  import random
4
  import spaces
5
  import torch
6
+ from diffusers import DiffusionPipeline
7
  from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
8
 
9
  dtype = torch.bfloat16
10
  device = "cuda" if torch.cuda.is_available() else "cpu"
11
 
12
+ pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16, revision="refs/pr/3").to("cpu")
13
 
14
  MAX_SEED = np.iinfo(np.int32).max
15
  MAX_IMAGE_SIZE = 2048
16
 
17
  @spaces.GPU(duration=190)
18
  def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=5.0, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
19
+ pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16, revision="refs/pr/3").to("cuda")
20
  if randomize_seed:
21
  seed = random.randint(0, MAX_SEED)
22
  generator = torch.Generator().manual_seed(seed)