Spaces:
Sleeping
Sleeping
from transformers import MarianMTModel, AutoModelForSeq2SeqLM, AutoTokenizer, GPTNeoForCausalLM, GPT2Tokenizer | |
import gradio as gr | |
import requests | |
import io | |
from PIL import Image | |
import os # Import os to access environment variables | |
# Load MarianMT model and tokenizer for Tamil to English translation | |
model_name = "Helsinki-NLP/opus-mt-mul-en" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name) | |
# Load GPT-Neo model and tokenizer | |
gpt_neo_model_name = "EleutherAI/gpt-neo-125M" | |
gpt_neo_model = GPTNeoForCausalLM.from_pretrained(gpt_neo_model_name) | |
gpt_neo_tokenizer = GPT2Tokenizer.from_pretrained(gpt_neo_model_name) | |
# Retrieve the API URL and headers for Flux.1 from environment variables | |
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev" | |
headers = {"Authorization": f"Bearer {os.environ.get('HUGGINGFACE_API_KEY')}"} # Use the environment variable | |
def generate_image_from_text(english_text): | |
payload = {"inputs": english_text} | |
response = requests.post(API_URL, headers=headers, json=payload) | |
if response.status_code == 200: | |
image_bytes = response.content | |
image = Image.open(io.BytesIO(image_bytes)) | |
return image | |
else: | |
return None # Handle error appropriately | |
def translate_tamil_to_english(tamil_text): | |
# Tokenize input and generate translation | |
inputs = tokenizer(tamil_text, return_tensors="pt", padding=True) | |
translated_tokens = model.generate(**inputs) | |
translated_text = tokenizer.decode(translated_tokens[0], skip_special_tokens=True) | |
return translated_text | |
def generate_creative_text(english_text): | |
input_ids = gpt_neo_tokenizer.encode(english_text, return_tensors='pt') | |
output = gpt_neo_model.generate(input_ids, max_length=150, num_return_sequences=1) | |
return gpt_neo_tokenizer.decode(output[0], skip_special_tokens=True) | |
def process_input(tamil_text): | |
# Step 1: Translate Tamil to English | |
translated_text = translate_tamil_to_english(tamil_text) | |
# Step 2: Generate Image from Translated English Text | |
image = generate_image_from_text(translated_text) | |
# Step 3: Generate Creative Text | |
creative_text = generate_creative_text(translated_text) | |
# Return results (translated text, image, and creative text) | |
return translated_text, image, creative_text | |
# Create a Gradio interface with input and output components | |
interface = gr.Interface( | |
fn=process_input, | |
inputs=gr.Textbox(lines=2, placeholder="Enter Tamil text..."), | |
outputs=[gr.Textbox(label="Translated Text (English)"), | |
gr.Image(label="Generated Image"), | |
gr.Textbox(label="Creative Text")], | |
title="Tamil to Creative Text & Image Generator", | |
description="Enter Tamil text to translate, generate an image, and produce creative content." | |
) | |
# Launch the Gradio app | |
interface.launch(debug=True) | |