RedactNLP / app.py
bluuebunny's picture
add app and requirements
c94dde8
raw
history blame
8.6 kB
# Import the required libraries
import gradio as gr
import cv2 # OpenCV, to read and manipulate images
import easyocr # EasyOCR, for OCR
import torch # PyTorch, for deep learning
import pymupdf # PDF manipulation
from transformers import pipeline # Hugging Face Transformers, for NER
import os # OS, for file operations
from glob import glob # Glob, to get file paths
##########################################################################################################
# Initiate the models
# Easyocr model
print("Initiating easyocr")
reader = easyocr.Reader(['en'], gpu=torch.cuda.is_available(), model_storage_directory='.')
# Use gpu if available
print("Using gpu if available")
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
print(f"Using device: {device}")
# Ner model
print("Initiating nlp pipeline")
nlp = pipeline("token-classification", model="dslim/distilbert-NER", device=device)
##########################################################################################################
## Functions
# Define img_format
img_format = "png"
# Convert pdf to set of images
def convert_to_images(pdf_file_path):
# Create a directory to store pdf images
pdf_images_dir = f'{pdf_file_path}_images'
os.makedirs(pdf_images_dir, exist_ok=True)
# DPI
dpi = 150
# Convert the PDF to images
print("Converting PDF to images...")
doc = pymupdf.open(pdf_file_path) # open document
for page in doc: # iterate through the pages
pix = page.get_pixmap(dpi=dpi) # render page to an image
pix.save(f"{pdf_images_dir}/page-{page.number}.{img_format}") # store image as a PNG
# Return the directory with the images
return pdf_images_dir
# Do the redaction
def redact_image(pdf_image_path, redaction_score_threshold):
# Loop through the images
print("Redacting sensitive information...")
print(f"Processing {pdf_image_path}...")
# Read the image
cv_image = cv2.imread(pdf_image_path)
# Read the text from the image
result = reader.readtext(cv_image, height_ths=0, width_ths=0, x_ths=0, y_ths=0)
# Get the text from the result
text = ' '.join([text for (bbox, text, prob) in result])
# Perform NER on the text
ner_results = nlp(text)
# Draw bounding boxes
for ((bbox, text, prob),ner_result) in zip(result, ner_results):
# Get the coordinates of the bounding box
(top_left, top_right, bottom_right, bottom_left) = bbox
top_left = tuple(map(int, top_left))
bottom_right = tuple(map(int, bottom_right))
# Calculate the centers of the top and bottom of the bounding box
# center_top = (int((top_left[0] + top_right[0]) / 2), int((top_left[1] + top_right[1]) / 2))
# center_bottom = (int((bottom_left[0] + bottom_right[0]) / 2), int((bottom_left[1] + bottom_right[1]) / 2))
# If the NER result is not empty, and the score is high
if len(ner_result) > 0 and ner_result['score'] > redaction_score_threshold:
# Get the entity and score
# entity = ner_result[0]['entity']
# score = str(ner_result[0]['score'])
# Apply a irreversible redaction
cv2.rectangle(cv_image, top_left, bottom_right, (0, 0, 0), -1)
# else:
# entity = 'O'
# score = '0'
# # Draw the bounding box
# cv2.rectangle(cv_image, top_left, bottom_right, (0, 255, 0), 1)
# # Draw the entity and score
# cv2.putText(cv_image, entity, center_top, cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
# cv2.putText(cv_image, score, center_bottom, cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2)
# Save the redacted image
print(f"Saving redacted {pdf_image_path}...")
redacted_image_path = pdf_image_path.replace(f'.{img_format}', f'_redacted.{img_format}')
# Save the redacted image in png format
cv2.imwrite(redacted_image_path, cv_image)
return redacted_image_path
# Convert the set of redacted images to a pdf
def stich_images_to_pdf(redacted_image_files, input_pdf_name):
# Sort the redacted images
redacted_image_files.sort()
# Convert the redacted images to a single PDF
print("Converting redacted images to PDF...")
redacted_pdf_folder = "/tmp/gradio/redacted"
os.makedirs(redacted_pdf_folder, exist_ok=True )
redacted_pdf_path = f'{redacted_pdf_folder}/{input_pdf_name}_redacted.pdf'
doc = pymupdf.open()
for redacted_image_file in redacted_image_files:
img = pymupdf.open(redacted_image_file) # open pic as document
rect = img[0].rect # pic dimension
pdfbytes = img.convert_to_pdf() # make a PDF stream
img.close() # no longer needed
imgPDF = pymupdf.open("pdf", pdfbytes) # open stream as PDF
page = doc.new_page(width = rect.width, # new page with ...
height = rect.height) # pic dimension
page.show_pdf_page(rect, imgPDF, 0) # image fills the page
doc.save(redacted_pdf_path)
# print(f"PDF saved as {redacted_pdf_path}")
return redacted_pdf_path
def cleanup(redacted_image_files, pdf_images, pdf_images_dir, original_pdf):
# Remove the directory with the images
print("Cleaning up...")
# Remove the redacted images
for file in redacted_image_files:
os.remove(file)
# Remove the pdf images
for file in pdf_images:
os.remove(file)
# Remove the pdf images directory
os.rmdir(pdf_images_dir)
# Remove original pdf
os.remove(original_pdf)
return None
# Func to control ui
def predict(input_pdf_path, sensitivity):
print("Setting threshold")
# Convert sensitivity to threshold
redaction_score_threshold = (100-sensitivity)/100
# Get file name
print("Getting filename")
input_pdf_name = input_pdf_path.split('.')[-2]
# Convert the PDF to images
print("Converting pdf to images")
pdf_images_dir = convert_to_images(input_pdf_path)
# Get the file paths of the images
print("Gathering converted images")
pdf_images = glob(f'{pdf_images_dir}/*.{img_format}', recursive=True)
pdf_images.sort()
# Redact images
print("Redacting images")
redacted_image_files = []
for pdf_image in pdf_images:
redacted_image_files.append(redact_image(pdf_image, redaction_score_threshold))
# Convert the redacted images to a single PDF
print("Stitching images to pdf")
redacted_pdf_path = stich_images_to_pdf(redacted_image_files, input_pdf_name)
print("Cleaning up")
cleanup(redacted_image_files, pdf_images, pdf_images_dir, input_pdf_path)
return redacted_pdf_path
##########################################################################################################
contact_text = """
# Contact Information
πŸ‘€ [Mitanshu Sukhwani](https://www.linkedin.com/in/mitanshusukhwani/)
βœ‰οΈ [email protected]
πŸ™ [mitanshu7](https://github.com/mitanshu7)
"""
##########################################################################################################
# Gradio interface
with gr.Blocks(theme=gr.themes.Soft()) as demo:
# Title and description
gr.Markdown("# RedactNLP: Redact your PDF!")
gr.Markdown("## How redaction happens:")
gr.Markdown("""
1. The PDF pages are converted to images.
2. EasyOCR is run on the converted images to extract text.
3. "FacebookAI/xlm-roberta-large-finetuned-conll03-english" model does the token classification.
4. Non-recoverable mask is applied to identified elements.
""")
# Input Section
pdf_file_input = gr.File(file_count='single', file_types=['pdf'], label='Upload PDF', show_label=True, interactive=True)
# Slider for results count
slider_input = gr.Slider(
minimum=0, maximum=100, value=80, step=1,
label="Sensitivity to remove elements. Higher is more sensitive, hence will redact aggresively."
)
# Submission Button
submit_btn = gr.Button("Redact")
# Output section
output = gr.File(file_count='single', file_types=['pdf'], label='Download redacted PDF', show_label=True, interactive=False)
# Attribution
gr.Markdown(contact_text)
# Link button click to the prediction function
submit_btn.click(predict, [pdf_file_input, slider_input], output)
################################################################################
if __name__ == "__main__":
demo.launch()