Spaces:
Running
Running
bluuebunny
commited on
Commit
β’
c94dde8
1
Parent(s):
bcdaf27
add app and requirements
Browse files- .gitignore +1 -0
- app.py +252 -0
- requirements.txt +6 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
*.pdf
|
app.py
ADDED
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Import the required libraries
|
2 |
+
import gradio as gr
|
3 |
+
import cv2 # OpenCV, to read and manipulate images
|
4 |
+
import easyocr # EasyOCR, for OCR
|
5 |
+
import torch # PyTorch, for deep learning
|
6 |
+
import pymupdf # PDF manipulation
|
7 |
+
from transformers import pipeline # Hugging Face Transformers, for NER
|
8 |
+
import os # OS, for file operations
|
9 |
+
from glob import glob # Glob, to get file paths
|
10 |
+
|
11 |
+
##########################################################################################################
|
12 |
+
# Initiate the models
|
13 |
+
|
14 |
+
# Easyocr model
|
15 |
+
print("Initiating easyocr")
|
16 |
+
reader = easyocr.Reader(['en'], gpu=torch.cuda.is_available(), model_storage_directory='.')
|
17 |
+
|
18 |
+
# Use gpu if available
|
19 |
+
print("Using gpu if available")
|
20 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
21 |
+
print(f"Using device: {device}")
|
22 |
+
|
23 |
+
# Ner model
|
24 |
+
print("Initiating nlp pipeline")
|
25 |
+
nlp = pipeline("token-classification", model="dslim/distilbert-NER", device=device)
|
26 |
+
|
27 |
+
##########################################################################################################
|
28 |
+
## Functions
|
29 |
+
|
30 |
+
# Define img_format
|
31 |
+
img_format = "png"
|
32 |
+
|
33 |
+
# Convert pdf to set of images
|
34 |
+
def convert_to_images(pdf_file_path):
|
35 |
+
|
36 |
+
# Create a directory to store pdf images
|
37 |
+
pdf_images_dir = f'{pdf_file_path}_images'
|
38 |
+
os.makedirs(pdf_images_dir, exist_ok=True)
|
39 |
+
|
40 |
+
# DPI
|
41 |
+
dpi = 150
|
42 |
+
|
43 |
+
# Convert the PDF to images
|
44 |
+
print("Converting PDF to images...")
|
45 |
+
doc = pymupdf.open(pdf_file_path) # open document
|
46 |
+
for page in doc: # iterate through the pages
|
47 |
+
pix = page.get_pixmap(dpi=dpi) # render page to an image
|
48 |
+
pix.save(f"{pdf_images_dir}/page-{page.number}.{img_format}") # store image as a PNG
|
49 |
+
|
50 |
+
# Return the directory with the images
|
51 |
+
return pdf_images_dir
|
52 |
+
|
53 |
+
# Do the redaction
|
54 |
+
def redact_image(pdf_image_path, redaction_score_threshold):
|
55 |
+
|
56 |
+
# Loop through the images
|
57 |
+
print("Redacting sensitive information...")
|
58 |
+
|
59 |
+
print(f"Processing {pdf_image_path}...")
|
60 |
+
# Read the image
|
61 |
+
cv_image = cv2.imread(pdf_image_path)
|
62 |
+
|
63 |
+
# Read the text from the image
|
64 |
+
result = reader.readtext(cv_image, height_ths=0, width_ths=0, x_ths=0, y_ths=0)
|
65 |
+
|
66 |
+
# Get the text from the result
|
67 |
+
text = ' '.join([text for (bbox, text, prob) in result])
|
68 |
+
|
69 |
+
# Perform NER on the text
|
70 |
+
ner_results = nlp(text)
|
71 |
+
|
72 |
+
# Draw bounding boxes
|
73 |
+
for ((bbox, text, prob),ner_result) in zip(result, ner_results):
|
74 |
+
|
75 |
+
# Get the coordinates of the bounding box
|
76 |
+
(top_left, top_right, bottom_right, bottom_left) = bbox
|
77 |
+
top_left = tuple(map(int, top_left))
|
78 |
+
bottom_right = tuple(map(int, bottom_right))
|
79 |
+
|
80 |
+
# Calculate the centers of the top and bottom of the bounding box
|
81 |
+
# center_top = (int((top_left[0] + top_right[0]) / 2), int((top_left[1] + top_right[1]) / 2))
|
82 |
+
# center_bottom = (int((bottom_left[0] + bottom_right[0]) / 2), int((bottom_left[1] + bottom_right[1]) / 2))
|
83 |
+
|
84 |
+
|
85 |
+
# If the NER result is not empty, and the score is high
|
86 |
+
if len(ner_result) > 0 and ner_result['score'] > redaction_score_threshold:
|
87 |
+
|
88 |
+
# Get the entity and score
|
89 |
+
# entity = ner_result[0]['entity']
|
90 |
+
# score = str(ner_result[0]['score'])
|
91 |
+
|
92 |
+
# Apply a irreversible redaction
|
93 |
+
cv2.rectangle(cv_image, top_left, bottom_right, (0, 0, 0), -1)
|
94 |
+
# else:
|
95 |
+
# entity = 'O'
|
96 |
+
# score = '0'
|
97 |
+
|
98 |
+
# # Draw the bounding box
|
99 |
+
# cv2.rectangle(cv_image, top_left, bottom_right, (0, 255, 0), 1)
|
100 |
+
# # Draw the entity and score
|
101 |
+
# cv2.putText(cv_image, entity, center_top, cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
|
102 |
+
# cv2.putText(cv_image, score, center_bottom, cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2)
|
103 |
+
|
104 |
+
# Save the redacted image
|
105 |
+
print(f"Saving redacted {pdf_image_path}...")
|
106 |
+
redacted_image_path = pdf_image_path.replace(f'.{img_format}', f'_redacted.{img_format}')
|
107 |
+
# Save the redacted image in png format
|
108 |
+
cv2.imwrite(redacted_image_path, cv_image)
|
109 |
+
|
110 |
+
return redacted_image_path
|
111 |
+
|
112 |
+
# Convert the set of redacted images to a pdf
|
113 |
+
def stich_images_to_pdf(redacted_image_files, input_pdf_name):
|
114 |
+
|
115 |
+
# Sort the redacted images
|
116 |
+
redacted_image_files.sort()
|
117 |
+
|
118 |
+
# Convert the redacted images to a single PDF
|
119 |
+
print("Converting redacted images to PDF...")
|
120 |
+
redacted_pdf_folder = "/tmp/gradio/redacted"
|
121 |
+
os.makedirs(redacted_pdf_folder, exist_ok=True )
|
122 |
+
redacted_pdf_path = f'{redacted_pdf_folder}/{input_pdf_name}_redacted.pdf'
|
123 |
+
|
124 |
+
doc = pymupdf.open()
|
125 |
+
for redacted_image_file in redacted_image_files:
|
126 |
+
img = pymupdf.open(redacted_image_file) # open pic as document
|
127 |
+
rect = img[0].rect # pic dimension
|
128 |
+
pdfbytes = img.convert_to_pdf() # make a PDF stream
|
129 |
+
img.close() # no longer needed
|
130 |
+
imgPDF = pymupdf.open("pdf", pdfbytes) # open stream as PDF
|
131 |
+
page = doc.new_page(width = rect.width, # new page with ...
|
132 |
+
height = rect.height) # pic dimension
|
133 |
+
page.show_pdf_page(rect, imgPDF, 0) # image fills the page
|
134 |
+
doc.save(redacted_pdf_path)
|
135 |
+
|
136 |
+
# print(f"PDF saved as {redacted_pdf_path}")
|
137 |
+
|
138 |
+
return redacted_pdf_path
|
139 |
+
|
140 |
+
def cleanup(redacted_image_files, pdf_images, pdf_images_dir, original_pdf):
|
141 |
+
|
142 |
+
# Remove the directory with the images
|
143 |
+
print("Cleaning up...")
|
144 |
+
|
145 |
+
# Remove the redacted images
|
146 |
+
for file in redacted_image_files:
|
147 |
+
os.remove(file)
|
148 |
+
|
149 |
+
# Remove the pdf images
|
150 |
+
for file in pdf_images:
|
151 |
+
os.remove(file)
|
152 |
+
|
153 |
+
# Remove the pdf images directory
|
154 |
+
os.rmdir(pdf_images_dir)
|
155 |
+
|
156 |
+
# Remove original pdf
|
157 |
+
os.remove(original_pdf)
|
158 |
+
|
159 |
+
return None
|
160 |
+
|
161 |
+
# Func to control ui
|
162 |
+
def predict(input_pdf_path, sensitivity):
|
163 |
+
|
164 |
+
print("Setting threshold")
|
165 |
+
# Convert sensitivity to threshold
|
166 |
+
redaction_score_threshold = (100-sensitivity)/100
|
167 |
+
|
168 |
+
# Get file name
|
169 |
+
print("Getting filename")
|
170 |
+
input_pdf_name = input_pdf_path.split('.')[-2]
|
171 |
+
|
172 |
+
# Convert the PDF to images
|
173 |
+
print("Converting pdf to images")
|
174 |
+
pdf_images_dir = convert_to_images(input_pdf_path)
|
175 |
+
|
176 |
+
# Get the file paths of the images
|
177 |
+
print("Gathering converted images")
|
178 |
+
pdf_images = glob(f'{pdf_images_dir}/*.{img_format}', recursive=True)
|
179 |
+
pdf_images.sort()
|
180 |
+
|
181 |
+
# Redact images
|
182 |
+
print("Redacting images")
|
183 |
+
redacted_image_files = []
|
184 |
+
|
185 |
+
for pdf_image in pdf_images:
|
186 |
+
|
187 |
+
redacted_image_files.append(redact_image(pdf_image, redaction_score_threshold))
|
188 |
+
|
189 |
+
|
190 |
+
# Convert the redacted images to a single PDF
|
191 |
+
print("Stitching images to pdf")
|
192 |
+
redacted_pdf_path = stich_images_to_pdf(redacted_image_files, input_pdf_name)
|
193 |
+
|
194 |
+
print("Cleaning up")
|
195 |
+
cleanup(redacted_image_files, pdf_images, pdf_images_dir, input_pdf_path)
|
196 |
+
|
197 |
+
return redacted_pdf_path
|
198 |
+
|
199 |
+
##########################################################################################################
|
200 |
+
|
201 |
+
contact_text = """
|
202 |
+
# Contact Information
|
203 |
+
|
204 |
+
π€ [Mitanshu Sukhwani](https://www.linkedin.com/in/mitanshusukhwani/)
|
205 |
+
|
206 |
+
βοΈ [email protected]
|
207 |
+
|
208 |
+
π [mitanshu7](https://github.com/mitanshu7)
|
209 |
+
"""
|
210 |
+
|
211 |
+
##########################################################################################################
|
212 |
+
# Gradio interface
|
213 |
+
|
214 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
215 |
+
|
216 |
+
# Title and description
|
217 |
+
gr.Markdown("# RedactNLP: Redact your PDF!")
|
218 |
+
gr.Markdown("## How redaction happens:")
|
219 |
+
gr.Markdown("""
|
220 |
+
1. The PDF pages are converted to images.
|
221 |
+
2. EasyOCR is run on the converted images to extract text.
|
222 |
+
3. "FacebookAI/xlm-roberta-large-finetuned-conll03-english" model does the token classification.
|
223 |
+
4. Non-recoverable mask is applied to identified elements.
|
224 |
+
""")
|
225 |
+
|
226 |
+
# Input Section
|
227 |
+
pdf_file_input = gr.File(file_count='single', file_types=['pdf'], label='Upload PDF', show_label=True, interactive=True)
|
228 |
+
|
229 |
+
# Slider for results count
|
230 |
+
slider_input = gr.Slider(
|
231 |
+
minimum=0, maximum=100, value=80, step=1,
|
232 |
+
label="Sensitivity to remove elements. Higher is more sensitive, hence will redact aggresively."
|
233 |
+
)
|
234 |
+
|
235 |
+
# Submission Button
|
236 |
+
submit_btn = gr.Button("Redact")
|
237 |
+
|
238 |
+
# Output section
|
239 |
+
output = gr.File(file_count='single', file_types=['pdf'], label='Download redacted PDF', show_label=True, interactive=False)
|
240 |
+
|
241 |
+
# Attribution
|
242 |
+
gr.Markdown(contact_text)
|
243 |
+
|
244 |
+
# Link button click to the prediction function
|
245 |
+
submit_btn.click(predict, [pdf_file_input, slider_input], output)
|
246 |
+
|
247 |
+
|
248 |
+
################################################################################
|
249 |
+
|
250 |
+
if __name__ == "__main__":
|
251 |
+
demo.launch()
|
252 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
opencv-python
|
4 |
+
easyocr
|
5 |
+
pymupdf
|
6 |
+
gradio
|