Spaces:
Sleeping
Sleeping
Duplicate from Babelscape/rebel-demo
Browse filesCo-authored-by: Mamta Narang <[email protected]>
- .gitattributes +27 -0
- README.md +38 -0
- app.py +104 -0
- requirements.txt +3 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Rebel Demo
|
3 |
+
emoji: 🌍
|
4 |
+
colorFrom: purple
|
5 |
+
colorTo: pink
|
6 |
+
sdk: streamlit
|
7 |
+
app_file: app.py
|
8 |
+
pinned: false
|
9 |
+
duplicated_from: Babelscape/rebel-demo
|
10 |
+
---
|
11 |
+
|
12 |
+
# Configuration
|
13 |
+
|
14 |
+
`title`: _string_
|
15 |
+
Display title for the Space
|
16 |
+
|
17 |
+
`emoji`: _string_
|
18 |
+
Space emoji (emoji-only character allowed)
|
19 |
+
|
20 |
+
`colorFrom`: _string_
|
21 |
+
Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
|
22 |
+
|
23 |
+
`colorTo`: _string_
|
24 |
+
Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
|
25 |
+
|
26 |
+
`sdk`: _string_
|
27 |
+
Can be either `gradio` or `streamlit`
|
28 |
+
|
29 |
+
`sdk_version` : _string_
|
30 |
+
Only applicable for `streamlit` SDK.
|
31 |
+
See [doc](https://hf.co/docs/hub/spaces) for more info on supported versions.
|
32 |
+
|
33 |
+
`app_file`: _string_
|
34 |
+
Path to your main application file (which contains either `gradio` or `streamlit` Python code).
|
35 |
+
Path is relative to the root of the repository.
|
36 |
+
|
37 |
+
`pinned`: _boolean_
|
38 |
+
Whether the Space stays on top of your list.
|
app.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from datasets import load_dataset
|
3 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
4 |
+
from time import time
|
5 |
+
import torch
|
6 |
+
|
7 |
+
@st.cache(
|
8 |
+
allow_output_mutation=True,
|
9 |
+
hash_funcs={
|
10 |
+
AutoTokenizer: lambda x: None,
|
11 |
+
AutoModelForSeq2SeqLM: lambda x: None,
|
12 |
+
},
|
13 |
+
suppress_st_warning=True
|
14 |
+
)
|
15 |
+
def load_models():
|
16 |
+
st_time = time()
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained("Babelscape/rebel-large")
|
18 |
+
print("+++++ loading Model", time() - st_time)
|
19 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("Babelscape/rebel-large")
|
20 |
+
if torch.cuda.is_available():
|
21 |
+
_ = model.to("cuda:0") # comment if no GPU available
|
22 |
+
_ = model.eval()
|
23 |
+
print("+++++ loaded model", time() - st_time)
|
24 |
+
dataset = load_dataset('Babelscape/rebel-dataset', split="validation", streaming=True)
|
25 |
+
dataset = [example for example in dataset.take(1001)]
|
26 |
+
return (tokenizer, model, dataset)
|
27 |
+
|
28 |
+
def extract_triplets(text):
|
29 |
+
triplets = []
|
30 |
+
relation, subject, relation, object_ = '', '', '', ''
|
31 |
+
text = text.strip()
|
32 |
+
current = 'x'
|
33 |
+
for token in text.split():
|
34 |
+
if token == "<triplet>":
|
35 |
+
current = 't'
|
36 |
+
if relation != '':
|
37 |
+
triplets.append({'head': subject.strip(), 'type': relation.strip(),'tail': object_.strip()})
|
38 |
+
relation = ''
|
39 |
+
subject = ''
|
40 |
+
elif token == "<subj>":
|
41 |
+
current = 's'
|
42 |
+
if relation != '':
|
43 |
+
triplets.append({'head': subject.strip(), 'type': relation.strip(),'tail': object_.strip()})
|
44 |
+
object_ = ''
|
45 |
+
elif token == "<obj>":
|
46 |
+
current = 'o'
|
47 |
+
relation = ''
|
48 |
+
else:
|
49 |
+
if current == 't':
|
50 |
+
subject += ' ' + token
|
51 |
+
elif current == 's':
|
52 |
+
object_ += ' ' + token
|
53 |
+
elif current == 'o':
|
54 |
+
relation += ' ' + token
|
55 |
+
if subject != '' and relation != '' and object_ != '':
|
56 |
+
triplets.append({'head': subject.strip(), 'type': relation.strip(),'tail': object_.strip()})
|
57 |
+
return triplets
|
58 |
+
|
59 |
+
st.markdown("""This is a demo for the Findings of EMNLP 2021 paper [REBEL: Relation Extraction By End-to-end Language generation](https://github.com/Babelscape/rebel/blob/main/docs/EMNLP_2021_REBEL__Camera_Ready_.pdf). The pre-trained model is able to extract triplets for up to 200 relation types from Wikidata or be used in downstream Relation Extraction task by fine-tuning. Find the model card [here](https://huggingface.co/Babelscape/rebel-large). Read more about it in the [paper](https://aclanthology.org/2021.findings-emnlp.204) and in the original [repository](https://github.com/Babelscape/rebel).""")
|
60 |
+
|
61 |
+
tokenizer, model, dataset = load_models()
|
62 |
+
|
63 |
+
agree = st.checkbox('Free input', False)
|
64 |
+
if agree:
|
65 |
+
text = st.text_input('Input text', 'Punta Cana is a resort town in the municipality of Higüey, in La Altagracia Province, the easternmost province of the Dominican Republic.')
|
66 |
+
print(text)
|
67 |
+
else:
|
68 |
+
dataset_example = st.slider('dataset id', 0, 1000, 0)
|
69 |
+
text = dataset[dataset_example]['context']
|
70 |
+
length_penalty = st.slider('length_penalty', 0, 10, 0)
|
71 |
+
num_beams = st.slider('num_beams', 1, 20, 3)
|
72 |
+
num_return_sequences = st.slider('num_return_sequences', 1, num_beams, 2)
|
73 |
+
|
74 |
+
gen_kwargs = {
|
75 |
+
"max_length": 256,
|
76 |
+
"length_penalty": length_penalty,
|
77 |
+
"num_beams": num_beams,
|
78 |
+
"num_return_sequences": num_return_sequences,
|
79 |
+
}
|
80 |
+
|
81 |
+
model_inputs = tokenizer(text, max_length=256, padding=True, truncation=True, return_tensors = 'pt')
|
82 |
+
generated_tokens = model.generate(
|
83 |
+
model_inputs["input_ids"].to(model.device),
|
84 |
+
attention_mask=model_inputs["attention_mask"].to(model.device),
|
85 |
+
**gen_kwargs,
|
86 |
+
)
|
87 |
+
|
88 |
+
decoded_preds = tokenizer.batch_decode(generated_tokens, skip_special_tokens=False)
|
89 |
+
st.title('Input text')
|
90 |
+
|
91 |
+
st.write(text)
|
92 |
+
|
93 |
+
if not agree:
|
94 |
+
st.title('Silver output')
|
95 |
+
st.write(dataset[dataset_example]['triplets'])
|
96 |
+
st.write(extract_triplets(dataset[dataset_example]['triplets']))
|
97 |
+
|
98 |
+
st.title('Prediction text')
|
99 |
+
decoded_preds = [text.replace('<s>', '').replace('</s>', '').replace('<pad>', '') for text in decoded_preds]
|
100 |
+
st.write(decoded_preds)
|
101 |
+
|
102 |
+
for idx, sentence in enumerate(decoded_preds):
|
103 |
+
st.title(f'Prediction triplets sentence {idx}')
|
104 |
+
st.write(extract_triplets(sentence))
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
streamlit
|
3 |
+
transformers
|