Lizhen Shi
dev
bba7376
raw
history blame
3.98 kB
import gradio as gr
import numpy as np
import torch
from datasets import load_dataset
import librosa
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline
from transformers import WhisperProcessor, WhisperForConditionalGeneration
device = "cuda:0" if torch.cuda.is_available() else "cpu"
# load speech translation checkpoint
# asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
asr_processor = WhisperProcessor.from_pretrained("openai/whisper-base")
asr_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-base").to(device)
asr_forced_decoder_ids = asr_processor.get_decoder_prompt_ids(language="dutch", task="transcribe")
# load text-to-speech checkpoint and speaker embeddings
if 0:
processor = SpeechT5Processor.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl")
model = SpeechT5ForTextToSpeech.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl").to(device)
if 1:
from transformers import VitsModel, VitsTokenizer
model = VitsModel.from_pretrained("Matthijs/mms-tts-fra")
tokenizer = VitsTokenizer.from_pretrained("Matthijs/mms-tts-fra")
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
def translate(audio):
if 0:
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"language":"dutch", "task":"transcribe"})
return outputs["text"]
else:
x, sr = librosa.load(audio)
input_features = asr_processor(x, sampling_rate=16000, return_tensors="pt").input_features
predicted_ids = asr_model.generate(input_features, forced_decoder_ids=asr_forced_decoder_ids)
# decode token ids to text
transcription = asr_processor.batch_decode(predicted_ids, skip_special_tokens=True)
return transcription
def synthesise(text):
if 0:
inputs = processor(text=text, return_tensors="pt")
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
return speech.cpu()
if 1:
inputs = tokenizer(text, return_tensors="pt")
input_ids = inputs["input_ids"]
with torch.no_grad():
outputs = model(input_ids)
speech = outputs.audio[0]
return speech.cpu()
def speech_to_speech_translation(audio):
translated_text = translate(audio)
print(translated_text)
synthesised_speech = synthesise(translated_text)
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
return 16000, synthesised_speech
title = "Cascaded STST"
description = """
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Dutch. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
"""
demo = gr.Blocks()
mic_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(source="microphone", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
title=title,
description=description,
)
file_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(source="upload", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
examples=[["./example.wav"]],
title=title,
description=description,
)
with demo:
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
demo.launch()