Spaces:
Sleeping
Sleeping
File size: 27,532 Bytes
d85d83b fcc706c d85d83b cd855de e391132 f5bb76d e391132 f5bb76d d85d83b 8f3e4ca d85d83b fcc706c d85d83b fcc706c d85d83b fcc706c d85d83b fcc706c d85d83b fcc706c d85d83b fcc706c d85d83b 71c1aec d85d83b 8f3e4ca d85d83b 3a2569c d85d83b 8f3e4ca d85d83b 71c1aec b0556db 71c1aec 3a2569c e391132 3a2569c e391132 774aee4 fcc706c d2b22fa 8eea7aa fcc706c 3a2569c 8f3e4ca 0da91fc 8f3e4ca 0da91fc 8f3e4ca 0da91fc 8f3e4ca d2b22fa 8eea7aa b7ef094 6646ae1 b7ef094 8f3e4ca b7ef094 fcc706c b7ef094 8f3e4ca b7ef094 fcc706c b7ef094 774aee4 8f3e4ca fcc706c 8eea7aa cd855de fcc706c cd855de b7ef094 cd855de 8f3e4ca cd855de 8eea7aa cd855de b7ef094 cd855de 8f3e4ca b7ef094 8f3e4ca b7ef094 fcc706c b7ef094 5238cd4 8f3e4ca b7ef094 8f3e4ca b7ef094 8f3e4ca 8eea7aa e391132 ddd82d3 fcc706c 6646ae1 8f3e4ca e391132 b7ef094 774aee4 8eea7aa 774aee4 e391132 b7ef094 8f3e4ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Matching Series is a metric for evaluating time-series generation models. It is based on the idea of matching the generated time-series with the original time-series. The metric calculates the Mean Squared Error (distance) between the generated time-series and the original time-series between matched instances."""
import concurrent.futures
import math
import statistics
from typing import List, Optional, Union
import datasets
import evaluate
import numpy as np
# TODO: Add BibTeX citation
_CITATION = """TBA"""
_DESCRIPTION = """\
Matching Series is a metric for evaluating time-series generation models. It is based on the idea of matching the generated time-series with the original time-series. The metric calculates the Mean Squared Error (distance) between the generated time-series and the original time-series between matched instances. The metric outputs a score greater or equal to 0, where 0 indicates a perfect generation.
"""
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
predictions: list of list of list of float or numpy.ndarray: The generated time-series. The shape of the array should be `(num_generation, seq_len, num_features)`.
references: list of list of list of float or numpy.ndarray: The original time-series. The shape of the array should be `(num_reference, seq_len, num_features)`.
batch_size: int, optional: The batch size for computing the metric. This affects quadratically. Default is None.
cuc_n_calculation: int, optional: The number of samples to compute the coverage because sampling exists. Default is 3.
cuc_n_samples: list of int, optional: The number of samples to compute the coverage. Default is $[2^i \text{for} i \leq \log_2 n] + [n]$.
metric: str, optional: The metric to measure distance between examples. Default is "mse". Available options are "mse", "mae", "rmse".
num_processes: int, optional: The number of processes to use for computing the distance. Default is 1.
instance_normalization: bool, optional: Whether to normalize the instances along the time axis. Default is False.
return_distance: bool, optional: Whether to return the distance matrix. Default is False.
return_matching: bool, optional: Whether to return the matching matrix. Default is False.
return_each_features: bool, optional: Whether to return the results for each feature. Default is False.
return_coverages: bool, optional: Whether to return the coverages. Default is False.
return_all: bool, optional: Whether to return all the results. Default is False.
dtype: str, optional: The data type used for computation. Default is "float32".
eps: float, optional: The epsilon value to avoid division by zero. Default is 1e-8.
Returns:
dict: A dictionary containing the following keys:
precision_distance (float): The precision of the distance.
recall_distance (float): The recall of the distance.
mean_distance (float): The mean of the distance.
index_distance (float): The index of the distance.
matching_precision (float): The precision of the matching instances.
matching_recall (float): The recall of the matching instances.
matching_f1 (float): The F1-score of the matching instances.
coverages (list of float): The coverages.
cuc (float): The coverage under the curve.
macro_.* (float): The macro value of the .*.
.*_features (list of float): The values computed individually for each feature.
distance (numpy.ndarray): The distance matrix.
match (numpy.ndarray): The matching matrix.
match_inv (numpy.ndarray): The inverse matching matrix.
Examples:
Examples should be written in doctest format, and should illustrate how
to use the function.
>>> num_generation = 100
>>> num_reference = 10
>>> seq_len = 100
>>> num_features = 10
>>> references = np.random.rand(num_reference, seq_len, num_features)
>>> predictions = np.random.rand(num_generation, seq_len, num_features)
>>> metric = evaluate.load("bowdbeg/matching_series")
>>> results = metric.compute(references=references, predictions=predictions, batch_size=1000, return_all=True)
>>> print(results)
{'precision_distance': 0.1573285013437271, 'recall_distance': 0.15106813609600067, 'mean_distance': 0.1541983187198639, 'index_distance': 0.16858606040477753, 'matching_precision': 0.06, 'matching_recall': 1.0, 'matching_f1': 0.11320756503381972, 'cuc': 0.12428571428571429, 'macro_precision_distance': 0.13803552389144896, 'macro_recall_distance': 0.12179495096206665, 'macro_mean_distance': 0.1299152374267578, 'macro_index_distance': 0.16858604848384856, 'macro_matching_precision': 0.094, 'macro_matching_recall': 0.97, 'macro_matching_f1': 0.17132608782381706, 'macro_cuc': 0.11419285714285714, 'distance': array([[[0.20763363, 0.16514072, 0.18695284, ..., 0.15037987,
0.19424284, 0.15943716],
[0.17150438, 0.18020014, 0.17024504, ..., 0.18492931,
0.18814348, 0.204207 ],
[0.1769202 , 0.15609328, 0.17568389, ..., 0.17731658,
0.2027854 , 0.13216409],
...,
[0.1838122 , 0.19475608, 0.14176111, ..., 0.1635111 ,
0.1652672 , 0.17145865],
[0.16084194, 0.14208058, 0.17567575, ..., 0.15595785,
0.16614595, 0.17834347],
[0.16388315, 0.14126392, 0.18021484, ..., 0.16791071,
0.18403953, 0.16666758]],
[[0.16838932, 0.18878576, 0.17654441, ..., 0.1747057 ,
0.16590554, 0.16901629],
[0.16553226, 0.1882645 , 0.17863466, ..., 0.19269662,
0.20451452, 0.19941731],
[0.16502398, 0.16619626, 0.18069996, ..., 0.16124909,
0.18933088, 0.1495165 ],
...,
[0.15946846, 0.19988221, 0.17965002, ..., 0.12951666,
0.2067793 , 0.13811146],
[0.16227122, 0.17736743, 0.18641905, ..., 0.15038314,
0.20186146, 0.17849396],
[0.16410898, 0.18323919, 0.16945514, ..., 0.15783694,
0.21556957, 0.17172968]],
[[0.18094379, 0.1364854 , 0.18436092, ..., 0.187335 ,
0.16240291, 0.13713893],
[0.18005298, 0.15323727, 0.15788248, ..., 0.19451861,
0.12822135, 0.14064161],
[0.1564556 , 0.17312287, 0.1856657 , ..., 0.17237219,
0.1596888 , 0.16547912],
...,
[0.15611127, 0.16121496, 0.15533476, ..., 0.16520709,
0.1427248 , 0.19455005],
[0.17268528, 0.17360437, 0.15962966, ..., 0.18134868,
0.15509704, 0.20222983],
[0.18704675, 0.15934442, 0.14928888, ..., 0.18904984,
0.16192877, 0.18576236]],
...,
[[0.13717972, 0.15645625, 0.16123378, ..., 0.19453087,
0.14441733, 0.1487963 ],
[0.1454296 , 0.13368016, 0.18665504, ..., 0.16096605,
0.15130125, 0.18332979],
[0.14654924, 0.19097947, 0.19629759, ..., 0.15887487,
0.19266474, 0.17430782],
...,
[0.161704 , 0.16357127, 0.18512094, ..., 0.16441964,
0.13961458, 0.17298506],
[0.1366249 , 0.15852758, 0.1982772 , ..., 0.18822236,
0.16153064, 0.19617072],
[0.14570995, 0.15005183, 0.19667573, ..., 0.1856473 ,
0.18603194, 0.19179863]],
[[0.17813908, 0.176182 , 0.16847256, ..., 0.16903524,
0.17150073, 0.15068175],
[0.17632519, 0.1404587 , 0.16388708, ..., 0.16873878,
0.15744762, 0.198475 ],
[0.14986345, 0.1517829 , 0.17624639, ..., 0.18365957,
0.17399347, 0.15581599],
...,
[0.16128553, 0.1974935 , 0.13766351, ..., 0.14026196,
0.15450196, 0.16110381],
[0.16281141, 0.14699166, 0.16935429, ..., 0.1394466 ,
0.1717883 , 0.16191883],
[0.14886455, 0.1603608 , 0.15172943, ..., 0.12851712,
0.19859877, 0.15576601]],
[[0.20230632, 0.19680001, 0.17143433, ..., 0.18601838,
0.15998998, 0.16043548],
[0.19753966, 0.19073424, 0.15046756, ..., 0.18833323,
0.16755773, 0.20127842],
[0.16012056, 0.16638812, 0.16493171, ..., 0.15849902,
0.20269662, 0.1857642 ],
...,
[0.16341361, 0.19168772, 0.16597596, ..., 0.15715535,
0.18122095, 0.17266828],
[0.1570099 , 0.18294124, 0.16713732, ..., 0.17442709,
0.17020254, 0.18804537],
[0.16752282, 0.1295177 , 0.18792175, ..., 0.13976808,
0.21054329, 0.18118018]]], dtype=float32), 'match': array([4, 7, 3, 9, 4, 0, 7, 5, 4, 7, 9, 7, 7, 5, 7, 0, 0, 7, 4, 3, 3, 2,
8, 9, 4, 4, 5, 1, 4, 9, 0, 2, 7, 3, 6, 5, 6, 3, 2, 2, 2, 6, 9, 4,
4, 9, 1, 6, 0, 6, 9, 2, 0, 6, 7, 2, 0, 4, 5, 2, 3, 9, 2, 3, 9, 1,
6, 4, 8, 9, 7, 4, 6, 5, 5, 6, 9, 5, 6, 2, 9, 4, 9, 3, 2, 9, 9, 7,
9, 5, 9, 1, 7, 6, 4, 4, 5, 4, 7, 5]), 'match_inv': array([15, 91, 79, 4, 4, 4, 49, 4, 49, 45]), 'coverages': [0.10000000000000002, 0.16666666666666666, 0.3666666666666667, 0.6333333333333333, 0.8333333333333334, 0.9, 1.0], 'precision_distance_features': [0.1383965164422989, 0.13804036378860474, 0.1388234943151474, 0.1392393559217453, 0.1357768476009369, 0.1364508718252182, 0.14039862155914307, 0.13417008519172668, 0.1368638128042221, 0.14219526946544647], 'recall_distance_features': [0.11730053275823593, 0.12232911586761475, 0.12200610339641571, 0.12571024894714355, 0.12081331014633179, 0.11693283170461655, 0.12660981714725494, 0.12248671054840088, 0.11726576089859009, 0.12649507820606232], 'mean_distance_features': [0.1278485246002674, 0.13018473982810974, 0.13041479885578156, 0.13247480243444443, 0.12829507887363434, 0.12669185176491737, 0.133504219353199, 0.12832839787006378, 0.1270647868514061, 0.1343451738357544], 'index_distance_features': [0.17064405977725983, 0.17019756138324738, 0.17373089492321014, 0.17575454711914062, 0.15942324697971344, 0.1615942418575287, 0.16519878804683685, 0.1714271903038025, 0.17072594165802002, 0.16716401278972626], 'matching_precision_features': [0.1, 0.09, 0.1, 0.1, 0.09, 0.09, 0.1, 0.08, 0.09, 0.1], 'matching_recall_features': [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.9, 0.9, 0.9, 1.0], 'matching_f1_features': [0.18181819851239656, 0.16513763164885095, 0.18181819851239656, 0.18181819851239656, 0.16513763164885095, 0.16513763164885095, 0.18000001639999985, 0.14693879251145342, 0.16363638033057834, 0.18181819851239656], 'cuc_features': [0.11935714285714286, 0.11578571428571431, 0.11814285714285715, 0.12407142857142857, 0.11207142857142856, 0.11821428571428572, 0.10807142857142855, 0.09635714285714285, 0.10700000000000001, 0.12285714285714286], 'coverages_features': [[0.10000000000000002, 0.20000000000000004, 0.26666666666666666, 0.4666666666666666, 0.7666666666666666, 0.8666666666666667, 1.0], [0.10000000000000002, 0.20000000000000004, 0.3666666666666667, 0.5666666666666668, 0.6, 0.8333333333333334, 1.0], [0.10000000000000002, 0.16666666666666666, 0.26666666666666666, 0.4666666666666666, 0.6999999999999998, 0.8666666666666667, 1.0], [0.10000000000000002, 0.20000000000000004, 0.3, 0.6, 0.7333333333333333, 0.9333333333333332, 1.0], [0.10000000000000002, 0.20000000000000004, 0.3, 0.5, 0.6666666666666666, 0.7666666666666666, 1.0], [0.10000000000000002, 0.20000000000000004, 0.3333333333333333, 0.5333333333333333, 0.7666666666666666, 0.8333333333333334, 1.0], [0.10000000000000002, 0.20000000000000004, 0.3, 0.5333333333333333, 0.6999999999999998, 0.7666666666666666, 0.9], [0.10000000000000002, 0.20000000000000004, 0.2333333333333333, 0.4666666666666666, 0.5333333333333333, 0.6333333333333333, 0.9], [0.10000000000000002, 0.16666666666666666, 0.26666666666666666, 0.4666666666666666, 0.5666666666666667, 0.8000000000000002, 0.9], [0.10000000000000002, 0.16666666666666666, 0.30000000000000004, 0.5666666666666667, 0.7999999999999999, 0.9, 1.0]]}
"""
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class matching_series(evaluate.Metric):
"""TODO: Short description of my evaluation module."""
def _info(self):
# TODO: Specifies the evaluate.EvaluationModuleInfo object
return evaluate.MetricInfo(
# This is the description that will appear on the modules page.
module_type="metric",
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
# This defines the format of each prediction and reference
features=datasets.Features(
{
"predictions": datasets.Sequence(datasets.Sequence(datasets.Value("float"))),
"references": datasets.Sequence(datasets.Sequence(datasets.Value("float"))),
}
),
# Homepage of the module for documentation
homepage="https://huggingface.co/spaces/bowdbeg/matching_series",
# Additional links to the codebase or references
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
reference_urls=["http://path.to.reference.url/new_module"],
)
def _download_and_prepare(self, dl_manager):
"""Optional: download external resources useful to compute the scores"""
pass
def compute(self, *, predictions=None, references=None, **kwargs) -> Optional[dict]:
""""""
all_kwargs = {"predictions": predictions, "references": references, **kwargs}
if predictions is None and references is None:
missing_kwargs = {k: None for k in self._feature_names() if k not in all_kwargs}
all_kwargs.update(missing_kwargs)
else:
missing_inputs = [k for k in self._feature_names() if k not in all_kwargs]
if missing_inputs:
raise ValueError(
f"Evaluation module inputs are missing: {missing_inputs}. All required inputs are {list(self._feature_names())}"
)
inputs = {input_name: all_kwargs[input_name] for input_name in self._feature_names()}
compute_kwargs = {k: kwargs[k] for k in kwargs if k not in self._feature_names()}
return self._compute(**inputs, **compute_kwargs)
def _compute(
self,
predictions: Union[List, np.ndarray],
references: Union[List, np.ndarray],
batch_size: Optional[int] = None,
cuc_n_calculation: int = 3,
cuc_n_samples: Union[List[int], str] = "auto",
metric: str = "mse",
num_processes: int = 1,
instance_normalization: bool = False,
return_distance: bool = False,
return_matching: bool = False,
return_each_features: bool = False,
return_coverages: bool = False,
return_all: bool = False,
dtype=np.float32,
eps: float = 1e-8,
):
"""
Compute the Matching Series metric
Args:
predictions: list of list of list of float or numpy.ndarray: The generated time-series. The shape of the array should be `(num_generation, seq_len, num_features)`.
references: list of list of list of float or numpy.ndarray: The original time-series. The shape of the array should be `(num_reference, seq_len, num_features)`.
batch_size: int, optional: The batch size for computing the metric. This affects quadratically. Default is None.
cuc_n_calculation: int, optional: The number of samples to compute the coverage because sampling exists. Default is 3.
cuc_n_samples: list of int, optional: The number of samples to compute the coverage. Default is $[2^i \text{for} i \leq \log_2 n] + [n]$.
metric: str, optional: The metric to measure distance between examples. Default is "mse". Available options are "mse", "mae", "rmse".
num_processes: int, optional: The number of processes to use for computing the distance. Default is 1.
instance_normalization: bool, optional: Whether to normalize the instances along the time axis. Default is False.
return_distance: bool, optional: Whether to return the distance matrix. Default is False.
return_matching: bool, optional: Whether to return the matching matrix. Default is False.
return_each_features: bool, optional: Whether to return the results for each feature. Default is False.
return_coverages: bool, optional: Whether to return the coverages. Default is False.
return_all: bool, optional: Whether to return all the results. Default is False.
dtype: str, optional: The data type used for computation. Default is "float32".
eps: float, optional: The epsilon value to avoid division by zero. Default is 1e-8.
Returns:
dict: A dictionary containing the following keys:
precision_distance (float): The precision of the distance.
recall_distance (float): The recall of the distance.
mean_distance (float): The mean of the distance.
index_distance (float): The index of the distance.
matching_precision (float): The precision of the matching instances.
matching_recall (float): The recall of the matching instances.
matching_f1 (float): The F1-score of the matching instances.
coverages (list of float): The coverages.
cuc (float): The coverage under the curve.
macro_.* (float): The macro value of the .*.
.*_features (list of float): The values computed individually for each feature.
distance (numpy.ndarray): The distance matrix.
match (numpy.ndarray): The matching matrix.
match_inv (numpy.ndarray): The inverse matching matrix.
"""
if return_all:
return_distance = True
return_matching = True
return_each_features = True
return_coverages = True
predictions = np.array(predictions).astype(dtype)
references = np.array(references).astype(dtype)
if instance_normalization:
predictions = (predictions - predictions.mean(axis=1, keepdims=True)) / predictions.std(
axis=1, keepdims=True
)
references = (references - references.mean(axis=1, keepdims=True)) / references.std(axis=1, keepdims=True)
assert isinstance(predictions, np.ndarray) and isinstance(references, np.ndarray)
if predictions.shape[1:] != references.shape[1:]:
raise ValueError(
"The number of features in the predictions and references should be the same. predictions: {}, references: {}".format(
predictions.shape[1:], references.shape[1:]
)
)
# at first, convert the inputs to numpy arrays
distance = self.compute_distance(
predictions=predictions,
references=references,
metric=metric,
batch_size=batch_size,
num_processes=num_processes,
dtype=dtype,
)
metrics = self._compute_metrics(
distance=distance.mean(axis=-1),
eps=eps,
cuc_n_calculation=cuc_n_calculation,
cuc_n_samples=cuc_n_samples,
)
metrics_feature = [
self._compute_metrics(distance[:, :, f], eps, cuc_n_calculation, cuc_n_samples)
for f in range(predictions.shape[-1])
]
macro_metrics = {
"macro_" + k: statistics.mean([m[k] for m in metrics_feature]) # type: ignore
for k in metrics_feature[0].keys()
if isinstance(metrics_feature[0][k], (int, float))
}
out = {}
out.update({k: v for k, v in metrics.items() if isinstance(v, (int, float))})
out.update(macro_metrics)
if return_distance:
out["distance"] = distance
if return_matching:
out.update({k: v for k, v in metrics.items() if "match" in k})
if return_coverages:
out["coverages"] = metrics["coverages"]
if return_each_features:
out.update(
{
k + "_features": [m[k] for m in metrics_feature]
for k in metrics_feature[0].keys()
if isinstance(metrics_feature[0][k], (int, float))
}
)
if return_coverages:
out.update(
{
"coverages_features": [m["coverages"] for m in metrics_feature],
}
)
return out
def compute_cuc(
self,
match: np.ndarray,
n_reference: int,
n_calculation: int,
n_samples: Union[List[int], str],
):
"""
Compute Coverage Under Curve
Args:
match: best match for each generated time series
n_reference: number of reference time series
n_calculation: number of Coverage Under Curve calculate times
n_samples: number of samples to use for Coverage Under Curve calculation. If "auto", it uses the number of samples of the predictions.
Returns:
"""
n_generaiton = len(match)
if n_samples == "auto":
exp = int(math.log2(n_generaiton))
n_samples = [int(2**i) for i in range(exp)]
n_samples.append(n_generaiton)
assert isinstance(n_samples, list) and all(isinstance(n, int) for n in n_samples)
coverages = []
for n_sample in n_samples:
coverage = 0
for _ in range(n_calculation):
sample = np.random.choice(match, size=n_sample, replace=False) # type: ignore
coverage += len(np.unique(sample)) / n_reference
coverages.append(coverage / n_calculation)
cuc = (np.trapz(coverages, n_samples) / len(n_samples) / max(n_samples)).item()
return coverages, cuc
@staticmethod
def _compute_distance(x, y, metric: str = "mse", axis: int = -1):
if metric.lower() == "mse":
return np.mean((x - y) ** 2, axis=axis)
elif metric.lower() == "mae":
return np.mean(np.abs(x - y), axis=axis)
elif metric.lower() == "rmse":
return np.sqrt(np.mean((x - y) ** 2, axis=axis))
else:
raise ValueError("Unknown metric: {}".format(metric))
def compute_distance(
self,
predictions: np.ndarray,
references: np.ndarray,
metric: str,
batch_size: Optional[int] = None,
num_processes: int = 1,
dtype=np.float32,
):
# distance between predictions and references for all example combinations for each features
# shape: (num_generation, num_reference, num_features)
if batch_size is not None:
if num_processes > 1:
distance = np.zeros((len(predictions), len(references), predictions.shape[-1]), dtype=dtype)
idxs = [
(i, j)
for i in range(0, len(predictions) + batch_size, batch_size)
for j in range(0, len(references) + batch_size, batch_size)
]
args = [
(predictions[i : i + batch_size, None], references[None, j : j + batch_size], metric, -2)
for i, j in idxs
]
with concurrent.futures.ProcessPoolExecutor(max_workers=num_processes) as executor:
results = executor.map(
self._compute_distance,
*zip(*args),
)
for (i, j), d in zip(idxs, results):
distance[i : i + batch_size, j : j + batch_size] = d
else:
distance = np.zeros((len(predictions), len(references), predictions.shape[-1]), dtype=dtype)
# iterate over the predictions and references in batches
for i in range(0, len(predictions) + batch_size, batch_size):
for j in range(0, len(references) + batch_size, batch_size):
d = self._compute_distance(
predictions[i : i + batch_size, None],
references[None, j : j + batch_size],
metric=metric,
axis=-2,
)
distance[i : i + batch_size, j : j + batch_size] = d
else:
distance = self._compute_distance(predictions[:, None], references[None, :], metric=metric, axis=-2)
return distance
def _compute_metrics(
self,
distance: np.ndarray,
eps: float = 1e-8,
cuc_n_calculation: int = 3,
cuc_n_samples: Union[List[int], str] = "auto",
) -> dict[str, float | list[float]]:
"""
Compute metrics from the distance matrix
Args:
distance: distance matrix. shape: (num_generation, num_reference)
Returns:
"""
index_distance = distance.diagonal(axis1=0, axis2=1).mean().item()
# matching scores
# best match for each generated time series
# shape: (num_generation,)
best_match = np.argmin(distance, axis=-1)
precision_distance = distance[np.arange(len(best_match)), best_match].mean().item()
# best match for each reference time series
# shape: (num_reference,)
best_match_inv = np.argmin(distance, axis=0)
recall_distance = distance[best_match_inv, np.arange(len(best_match_inv))].mean().item()
mean_distance = (precision_distance + recall_distance) / 2
# matching precision, recall and f1
matching_precision = np.unique(best_match_inv).size / len(best_match)
matching_recall = np.unique(best_match).size / len(best_match_inv)
matching_f1 = 2 / (1 / (matching_precision + eps) + 1 / (matching_recall + eps))
# cuc
coverages, cuc = self.compute_cuc(best_match, len(best_match_inv), cuc_n_calculation, cuc_n_samples)
return {
"precision_distance": precision_distance,
"recall_distance": recall_distance,
"mean_distance": mean_distance,
"index_distance": index_distance,
"matching_precision": matching_precision,
"matching_recall": matching_recall,
"matching_f1": matching_f1,
"cuc": cuc,
"coverages": coverages,
"match": best_match,
"match_inv": best_match_inv,
}
|