File size: 27,532 Bytes
d85d83b
 
 
 
 
 
 
 
 
 
 
 
 
fcc706c
d85d83b
cd855de
e391132
f5bb76d
e391132
f5bb76d
d85d83b
8f3e4ca
 
d85d83b
 
fcc706c
d85d83b
 
fcc706c
d85d83b
 
 
 
 
 
fcc706c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d85d83b
fcc706c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d85d83b
 
 
 
fcc706c
 
 
 
 
 
 
 
d85d83b
fcc706c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d85d83b
 
 
 
71c1aec
d85d83b
 
 
 
 
 
 
 
 
 
 
8f3e4ca
 
 
 
 
 
d85d83b
3a2569c
d85d83b
 
8f3e4ca
d85d83b
 
 
 
 
 
71c1aec
b0556db
71c1aec
 
 
 
 
 
 
 
 
 
 
 
 
 
3a2569c
 
e391132
 
3a2569c
e391132
 
774aee4
fcc706c
 
d2b22fa
 
 
 
 
8eea7aa
fcc706c
3a2569c
8f3e4ca
0da91fc
 
8f3e4ca
0da91fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f3e4ca
0da91fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f3e4ca
d2b22fa
 
 
 
 
8eea7aa
 
b7ef094
6646ae1
 
 
 
 
b7ef094
 
8f3e4ca
 
 
 
 
 
 
 
b7ef094
 
 
 
 
fcc706c
b7ef094
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f3e4ca
b7ef094
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fcc706c
b7ef094
 
774aee4
8f3e4ca
 
fcc706c
8eea7aa
cd855de
 
 
 
 
 
 
 
 
fcc706c
cd855de
b7ef094
cd855de
8f3e4ca
cd855de
 
 
 
8eea7aa
cd855de
 
 
b7ef094
cd855de
 
 
 
 
 
8f3e4ca
b7ef094
 
8f3e4ca
b7ef094
 
 
fcc706c
b7ef094
 
 
 
 
 
 
 
 
5238cd4
8f3e4ca
 
 
 
b7ef094
 
8f3e4ca
 
 
b7ef094
 
8f3e4ca
8eea7aa
e391132
 
ddd82d3
fcc706c
6646ae1
8f3e4ca
e391132
b7ef094
 
774aee4
 
8eea7aa
774aee4
e391132
 
 
 
b7ef094
 
 
8f3e4ca
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Matching Series is a metric for evaluating time-series generation models. It is based on the idea of matching the generated time-series with the original time-series. The metric calculates the Mean Squared Error (distance) between the generated time-series and the original time-series between matched instances."""

import concurrent.futures
import math
import statistics
from typing import List, Optional, Union

import datasets
import evaluate
import numpy as np

# TODO: Add BibTeX citation
_CITATION = """TBA"""

_DESCRIPTION = """\
Matching Series is a metric for evaluating time-series generation models. It is based on the idea of matching the generated time-series with the original time-series. The metric calculates the Mean Squared Error (distance) between the generated time-series and the original time-series between matched instances. The metric outputs a score greater or equal to 0, where 0 indicates a perfect generation.
"""


_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references, using certain scores
Args:
    predictions: list of list of list of float or numpy.ndarray: The generated time-series. The shape of the array should be `(num_generation, seq_len, num_features)`.
    references: list of list of list of float or numpy.ndarray: The original time-series. The shape of the array should be `(num_reference, seq_len, num_features)`.
    batch_size: int, optional: The batch size for computing the metric. This affects quadratically. Default is None.
    cuc_n_calculation: int, optional: The number of samples to compute the coverage because sampling exists. Default is 3.
    cuc_n_samples: list of int, optional: The number of samples to compute the coverage. Default is $[2^i \text{for} i \leq \log_2 n] + [n]$.
    metric: str, optional: The metric to measure distance between examples. Default is "mse". Available options are "mse", "mae", "rmse".
    num_processes: int, optional: The number of processes to use for computing the distance. Default is 1.
    instance_normalization: bool, optional: Whether to normalize the instances along the time axis. Default is False.
    return_distance: bool, optional: Whether to return the distance matrix. Default is False.
    return_matching: bool, optional: Whether to return the matching matrix. Default is False.
    return_each_features: bool, optional: Whether to return the results for each feature. Default is False.
    return_coverages: bool, optional: Whether to return the coverages. Default is False.
    return_all: bool, optional: Whether to return all the results. Default is False.
    dtype: str, optional: The data type used for computation. Default is "float32".
    eps: float, optional: The epsilon value to avoid division by zero. Default is 1e-8.
Returns:
    dict: A dictionary containing the following keys:
        precision_distance (float): The precision of the distance.
        recall_distance (float): The recall of the distance.
        mean_distance (float): The mean of the distance.
        index_distance (float): The index of the distance.
        matching_precision (float): The precision of the matching instances.
        matching_recall (float): The recall of the matching instances.
        matching_f1 (float): The F1-score of the matching instances.
        coverages (list of float): The coverages.
        cuc (float): The coverage under the curve.
        macro_.* (float): The macro value of the .*.
        .*_features (list of float): The values computed individually for each feature.
        distance (numpy.ndarray): The distance matrix.
        match (numpy.ndarray): The matching matrix.
        match_inv (numpy.ndarray): The inverse matching matrix.
Examples:
    Examples should be written in doctest format, and should illustrate how
    to use the function.

    >>> num_generation = 100
    >>> num_reference = 10
    >>> seq_len = 100
    >>> num_features = 10
    >>> references = np.random.rand(num_reference, seq_len, num_features)
    >>> predictions = np.random.rand(num_generation, seq_len, num_features)
    >>> metric = evaluate.load("bowdbeg/matching_series")
    >>> results = metric.compute(references=references, predictions=predictions, batch_size=1000, return_all=True)
    >>> print(results)
    {'precision_distance': 0.1573285013437271, 'recall_distance': 0.15106813609600067, 'mean_distance': 0.1541983187198639, 'index_distance': 0.16858606040477753, 'matching_precision': 0.06, 'matching_recall': 1.0, 'matching_f1': 0.11320756503381972, 'cuc': 0.12428571428571429, 'macro_precision_distance': 0.13803552389144896, 'macro_recall_distance': 0.12179495096206665, 'macro_mean_distance': 0.1299152374267578, 'macro_index_distance': 0.16858604848384856, 'macro_matching_precision': 0.094, 'macro_matching_recall': 0.97, 'macro_matching_f1': 0.17132608782381706, 'macro_cuc': 0.11419285714285714, 'distance': array([[[0.20763363, 0.16514072, 0.18695284, ..., 0.15037987,
            0.19424284, 0.15943716],
            [0.17150438, 0.18020014, 0.17024504, ..., 0.18492931,
            0.18814348, 0.204207  ],
            [0.1769202 , 0.15609328, 0.17568389, ..., 0.17731658,
            0.2027854 , 0.13216409],
            ...,
            [0.1838122 , 0.19475608, 0.14176111, ..., 0.1635111 ,
            0.1652672 , 0.17145865],
            [0.16084194, 0.14208058, 0.17567575, ..., 0.15595785,
            0.16614595, 0.17834347],
            [0.16388315, 0.14126392, 0.18021484, ..., 0.16791071,
            0.18403953, 0.16666758]],

        [[0.16838932, 0.18878576, 0.17654441, ..., 0.1747057 ,
            0.16590554, 0.16901629],
            [0.16553226, 0.1882645 , 0.17863466, ..., 0.19269662,
            0.20451452, 0.19941731],
            [0.16502398, 0.16619626, 0.18069996, ..., 0.16124909,
            0.18933088, 0.1495165 ],
            ...,
            [0.15946846, 0.19988221, 0.17965002, ..., 0.12951666,
            0.2067793 , 0.13811146],
            [0.16227122, 0.17736743, 0.18641905, ..., 0.15038314,
            0.20186146, 0.17849396],
            [0.16410898, 0.18323919, 0.16945514, ..., 0.15783694,
            0.21556957, 0.17172968]],

        [[0.18094379, 0.1364854 , 0.18436092, ..., 0.187335  ,
            0.16240291, 0.13713893],
            [0.18005298, 0.15323727, 0.15788248, ..., 0.19451861,
            0.12822135, 0.14064161],
            [0.1564556 , 0.17312287, 0.1856657 , ..., 0.17237219,
            0.1596888 , 0.16547912],
            ...,
            [0.15611127, 0.16121496, 0.15533476, ..., 0.16520709,
            0.1427248 , 0.19455005],
            [0.17268528, 0.17360437, 0.15962966, ..., 0.18134868,
            0.15509704, 0.20222983],
            [0.18704675, 0.15934442, 0.14928888, ..., 0.18904984,
            0.16192877, 0.18576236]],

        ...,

        [[0.13717972, 0.15645625, 0.16123378, ..., 0.19453087,
            0.14441733, 0.1487963 ],
            [0.1454296 , 0.13368016, 0.18665504, ..., 0.16096605,
            0.15130125, 0.18332979],
            [0.14654924, 0.19097947, 0.19629759, ..., 0.15887487,
            0.19266474, 0.17430782],
            ...,
            [0.161704  , 0.16357127, 0.18512094, ..., 0.16441964,
            0.13961458, 0.17298506],
            [0.1366249 , 0.15852758, 0.1982772 , ..., 0.18822236,
            0.16153064, 0.19617072],
            [0.14570995, 0.15005183, 0.19667573, ..., 0.1856473 ,
            0.18603194, 0.19179863]],

        [[0.17813908, 0.176182  , 0.16847256, ..., 0.16903524,
            0.17150073, 0.15068175],
            [0.17632519, 0.1404587 , 0.16388708, ..., 0.16873878,
            0.15744762, 0.198475  ],
            [0.14986345, 0.1517829 , 0.17624639, ..., 0.18365957,
            0.17399347, 0.15581599],
            ...,
            [0.16128553, 0.1974935 , 0.13766351, ..., 0.14026196,
            0.15450196, 0.16110381],
            [0.16281141, 0.14699166, 0.16935429, ..., 0.1394466 ,
            0.1717883 , 0.16191883],
            [0.14886455, 0.1603608 , 0.15172943, ..., 0.12851712,
            0.19859877, 0.15576601]],

        [[0.20230632, 0.19680001, 0.17143433, ..., 0.18601838,
            0.15998998, 0.16043548],
            [0.19753966, 0.19073424, 0.15046756, ..., 0.18833323,
            0.16755773, 0.20127842],
            [0.16012056, 0.16638812, 0.16493171, ..., 0.15849902,
            0.20269662, 0.1857642 ],
            ...,
            [0.16341361, 0.19168772, 0.16597596, ..., 0.15715535,
            0.18122095, 0.17266828],
            [0.1570099 , 0.18294124, 0.16713732, ..., 0.17442709,
            0.17020254, 0.18804537],
            [0.16752282, 0.1295177 , 0.18792175, ..., 0.13976808,
            0.21054329, 0.18118018]]], dtype=float32), 'match': array([4, 7, 3, 9, 4, 0, 7, 5, 4, 7, 9, 7, 7, 5, 7, 0, 0, 7, 4, 3, 3, 2,
        8, 9, 4, 4, 5, 1, 4, 9, 0, 2, 7, 3, 6, 5, 6, 3, 2, 2, 2, 6, 9, 4,
        4, 9, 1, 6, 0, 6, 9, 2, 0, 6, 7, 2, 0, 4, 5, 2, 3, 9, 2, 3, 9, 1,
        6, 4, 8, 9, 7, 4, 6, 5, 5, 6, 9, 5, 6, 2, 9, 4, 9, 3, 2, 9, 9, 7,
        9, 5, 9, 1, 7, 6, 4, 4, 5, 4, 7, 5]), 'match_inv': array([15, 91, 79,  4,  4,  4, 49,  4, 49, 45]), 'coverages': [0.10000000000000002, 0.16666666666666666, 0.3666666666666667, 0.6333333333333333, 0.8333333333333334, 0.9, 1.0], 'precision_distance_features': [0.1383965164422989, 0.13804036378860474, 0.1388234943151474, 0.1392393559217453, 0.1357768476009369, 0.1364508718252182, 0.14039862155914307, 0.13417008519172668, 0.1368638128042221, 0.14219526946544647], 'recall_distance_features': [0.11730053275823593, 0.12232911586761475, 0.12200610339641571, 0.12571024894714355, 0.12081331014633179, 0.11693283170461655, 0.12660981714725494, 0.12248671054840088, 0.11726576089859009, 0.12649507820606232], 'mean_distance_features': [0.1278485246002674, 0.13018473982810974, 0.13041479885578156, 0.13247480243444443, 0.12829507887363434, 0.12669185176491737, 0.133504219353199, 0.12832839787006378, 0.1270647868514061, 0.1343451738357544], 'index_distance_features': [0.17064405977725983, 0.17019756138324738, 0.17373089492321014, 0.17575454711914062, 0.15942324697971344, 0.1615942418575287, 0.16519878804683685, 0.1714271903038025, 0.17072594165802002, 0.16716401278972626], 'matching_precision_features': [0.1, 0.09, 0.1, 0.1, 0.09, 0.09, 0.1, 0.08, 0.09, 0.1], 'matching_recall_features': [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.9, 0.9, 0.9, 1.0], 'matching_f1_features': [0.18181819851239656, 0.16513763164885095, 0.18181819851239656, 0.18181819851239656, 0.16513763164885095, 0.16513763164885095, 0.18000001639999985, 0.14693879251145342, 0.16363638033057834, 0.18181819851239656], 'cuc_features': [0.11935714285714286, 0.11578571428571431, 0.11814285714285715, 0.12407142857142857, 0.11207142857142856, 0.11821428571428572, 0.10807142857142855, 0.09635714285714285, 0.10700000000000001, 0.12285714285714286], 'coverages_features': [[0.10000000000000002, 0.20000000000000004, 0.26666666666666666, 0.4666666666666666, 0.7666666666666666, 0.8666666666666667, 1.0], [0.10000000000000002, 0.20000000000000004, 0.3666666666666667, 0.5666666666666668, 0.6, 0.8333333333333334, 1.0], [0.10000000000000002, 0.16666666666666666, 0.26666666666666666, 0.4666666666666666, 0.6999999999999998, 0.8666666666666667, 1.0], [0.10000000000000002, 0.20000000000000004, 0.3, 0.6, 0.7333333333333333, 0.9333333333333332, 1.0], [0.10000000000000002, 0.20000000000000004, 0.3, 0.5, 0.6666666666666666, 0.7666666666666666, 1.0], [0.10000000000000002, 0.20000000000000004, 0.3333333333333333, 0.5333333333333333, 0.7666666666666666, 0.8333333333333334, 1.0], [0.10000000000000002, 0.20000000000000004, 0.3, 0.5333333333333333, 0.6999999999999998, 0.7666666666666666, 0.9], [0.10000000000000002, 0.20000000000000004, 0.2333333333333333, 0.4666666666666666, 0.5333333333333333, 0.6333333333333333, 0.9], [0.10000000000000002, 0.16666666666666666, 0.26666666666666666, 0.4666666666666666, 0.5666666666666667, 0.8000000000000002, 0.9], [0.10000000000000002, 0.16666666666666666, 0.30000000000000004, 0.5666666666666667, 0.7999999999999999, 0.9, 1.0]]}
"""


@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class matching_series(evaluate.Metric):
    """TODO: Short description of my evaluation module."""

    def _info(self):
        # TODO: Specifies the evaluate.EvaluationModuleInfo object
        return evaluate.MetricInfo(
            # This is the description that will appear on the modules page.
            module_type="metric",
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            # This defines the format of each prediction and reference
            features=datasets.Features(
                {
                    "predictions": datasets.Sequence(datasets.Sequence(datasets.Value("float"))),
                    "references": datasets.Sequence(datasets.Sequence(datasets.Value("float"))),
                }
            ),
            # Homepage of the module for documentation
            homepage="https://huggingface.co/spaces/bowdbeg/matching_series",
            # Additional links to the codebase or references
            codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
            reference_urls=["http://path.to.reference.url/new_module"],
        )

    def _download_and_prepare(self, dl_manager):
        """Optional: download external resources useful to compute the scores"""
        pass

    def compute(self, *, predictions=None, references=None, **kwargs) -> Optional[dict]:
        """"""
        all_kwargs = {"predictions": predictions, "references": references, **kwargs}
        if predictions is None and references is None:
            missing_kwargs = {k: None for k in self._feature_names() if k not in all_kwargs}
            all_kwargs.update(missing_kwargs)
        else:
            missing_inputs = [k for k in self._feature_names() if k not in all_kwargs]
            if missing_inputs:
                raise ValueError(
                    f"Evaluation module inputs are missing: {missing_inputs}. All required inputs are {list(self._feature_names())}"
                )
        inputs = {input_name: all_kwargs[input_name] for input_name in self._feature_names()}
        compute_kwargs = {k: kwargs[k] for k in kwargs if k not in self._feature_names()}
        return self._compute(**inputs, **compute_kwargs)

    def _compute(
        self,
        predictions: Union[List, np.ndarray],
        references: Union[List, np.ndarray],
        batch_size: Optional[int] = None,
        cuc_n_calculation: int = 3,
        cuc_n_samples: Union[List[int], str] = "auto",
        metric: str = "mse",
        num_processes: int = 1,
        instance_normalization: bool = False,
        return_distance: bool = False,
        return_matching: bool = False,
        return_each_features: bool = False,
        return_coverages: bool = False,
        return_all: bool = False,
        dtype=np.float32,
        eps: float = 1e-8,
    ):
        """
        Compute the Matching Series metric

        Args:
            predictions: list of list of list of float or numpy.ndarray: The generated time-series. The shape of the array should be `(num_generation, seq_len, num_features)`.
            references: list of list of list of float or numpy.ndarray: The original time-series. The shape of the array should be `(num_reference, seq_len, num_features)`.
            batch_size: int, optional: The batch size for computing the metric. This affects quadratically. Default is None.
            cuc_n_calculation: int, optional: The number of samples to compute the coverage because sampling exists. Default is 3.
            cuc_n_samples: list of int, optional: The number of samples to compute the coverage. Default is $[2^i \text{for} i \leq \log_2 n] + [n]$.
            metric: str, optional: The metric to measure distance between examples. Default is "mse". Available options are "mse", "mae", "rmse".
            num_processes: int, optional: The number of processes to use for computing the distance. Default is 1.
            instance_normalization: bool, optional: Whether to normalize the instances along the time axis. Default is False.
            return_distance: bool, optional: Whether to return the distance matrix. Default is False.
            return_matching: bool, optional: Whether to return the matching matrix. Default is False.
            return_each_features: bool, optional: Whether to return the results for each feature. Default is False.
            return_coverages: bool, optional: Whether to return the coverages. Default is False.
            return_all: bool, optional: Whether to return all the results. Default is False.
            dtype: str, optional: The data type used for computation. Default is "float32".
            eps: float, optional: The epsilon value to avoid division by zero. Default is 1e-8.
        Returns:
            dict: A dictionary containing the following keys:
                precision_distance (float): The precision of the distance.
                recall_distance (float): The recall of the distance.
                mean_distance (float): The mean of the distance.
                index_distance (float): The index of the distance.
                matching_precision (float): The precision of the matching instances.
                matching_recall (float): The recall of the matching instances.
                matching_f1 (float): The F1-score of the matching instances.
                coverages (list of float): The coverages.
                cuc (float): The coverage under the curve.
                macro_.* (float): The macro value of the .*.
                .*_features (list of float): The values computed individually for each feature.
                distance (numpy.ndarray): The distance matrix.
                match (numpy.ndarray): The matching matrix.
                match_inv (numpy.ndarray): The inverse matching matrix.
        """
        if return_all:
            return_distance = True
            return_matching = True
            return_each_features = True
            return_coverages = True
        predictions = np.array(predictions).astype(dtype)
        references = np.array(references).astype(dtype)

        if instance_normalization:
            predictions = (predictions - predictions.mean(axis=1, keepdims=True)) / predictions.std(
                axis=1, keepdims=True
            )
            references = (references - references.mean(axis=1, keepdims=True)) / references.std(axis=1, keepdims=True)

        assert isinstance(predictions, np.ndarray) and isinstance(references, np.ndarray)
        if predictions.shape[1:] != references.shape[1:]:
            raise ValueError(
                "The number of features in the predictions and references should be the same. predictions: {}, references: {}".format(
                    predictions.shape[1:], references.shape[1:]
                )
            )

        # at first, convert the inputs to numpy arrays
        distance = self.compute_distance(
            predictions=predictions,
            references=references,
            metric=metric,
            batch_size=batch_size,
            num_processes=num_processes,
            dtype=dtype,
        )

        metrics = self._compute_metrics(
            distance=distance.mean(axis=-1),
            eps=eps,
            cuc_n_calculation=cuc_n_calculation,
            cuc_n_samples=cuc_n_samples,
        )
        metrics_feature = [
            self._compute_metrics(distance[:, :, f], eps, cuc_n_calculation, cuc_n_samples)
            for f in range(predictions.shape[-1])
        ]
        macro_metrics = {
            "macro_" + k: statistics.mean([m[k] for m in metrics_feature])  # type: ignore
            for k in metrics_feature[0].keys()
            if isinstance(metrics_feature[0][k], (int, float))
        }

        out = {}
        out.update({k: v for k, v in metrics.items() if isinstance(v, (int, float))})
        out.update(macro_metrics)

        if return_distance:
            out["distance"] = distance
        if return_matching:
            out.update({k: v for k, v in metrics.items() if "match" in k})
        if return_coverages:
            out["coverages"] = metrics["coverages"]
        if return_each_features:
            out.update(
                {
                    k + "_features": [m[k] for m in metrics_feature]
                    for k in metrics_feature[0].keys()
                    if isinstance(metrics_feature[0][k], (int, float))
                }
            )
            if return_coverages:
                out.update(
                    {
                        "coverages_features": [m["coverages"] for m in metrics_feature],
                    }
                )
        return out

    def compute_cuc(
        self,
        match: np.ndarray,
        n_reference: int,
        n_calculation: int,
        n_samples: Union[List[int], str],
    ):
        """
        Compute Coverage Under Curve
        Args:
            match: best match for each generated time series
            n_reference: number of reference time series
            n_calculation: number of Coverage Under Curve calculate times
            n_samples: number of samples to use for Coverage Under Curve calculation. If "auto", it uses the number of samples of the predictions.
        Returns:
        """
        n_generaiton = len(match)
        if n_samples == "auto":
            exp = int(math.log2(n_generaiton))
            n_samples = [int(2**i) for i in range(exp)]
            n_samples.append(n_generaiton)
        assert isinstance(n_samples, list) and all(isinstance(n, int) for n in n_samples)

        coverages = []
        for n_sample in n_samples:
            coverage = 0
            for _ in range(n_calculation):
                sample = np.random.choice(match, size=n_sample, replace=False)  # type: ignore
                coverage += len(np.unique(sample)) / n_reference
            coverages.append(coverage / n_calculation)
        cuc = (np.trapz(coverages, n_samples) / len(n_samples) / max(n_samples)).item()
        return coverages, cuc

    @staticmethod
    def _compute_distance(x, y, metric: str = "mse", axis: int = -1):
        if metric.lower() == "mse":
            return np.mean((x - y) ** 2, axis=axis)
        elif metric.lower() == "mae":
            return np.mean(np.abs(x - y), axis=axis)
        elif metric.lower() == "rmse":
            return np.sqrt(np.mean((x - y) ** 2, axis=axis))
        else:
            raise ValueError("Unknown metric: {}".format(metric))

    def compute_distance(
        self,
        predictions: np.ndarray,
        references: np.ndarray,
        metric: str,
        batch_size: Optional[int] = None,
        num_processes: int = 1,
        dtype=np.float32,
    ):
        # distance between predictions and references for all example combinations for each features
        # shape: (num_generation, num_reference, num_features)
        if batch_size is not None:
            if num_processes > 1:
                distance = np.zeros((len(predictions), len(references), predictions.shape[-1]), dtype=dtype)
                idxs = [
                    (i, j)
                    for i in range(0, len(predictions) + batch_size, batch_size)
                    for j in range(0, len(references) + batch_size, batch_size)
                ]
                args = [
                    (predictions[i : i + batch_size, None], references[None, j : j + batch_size], metric, -2)
                    for i, j in idxs
                ]
                with concurrent.futures.ProcessPoolExecutor(max_workers=num_processes) as executor:
                    results = executor.map(
                        self._compute_distance,
                        *zip(*args),
                    )
                    for (i, j), d in zip(idxs, results):
                        distance[i : i + batch_size, j : j + batch_size] = d

            else:
                distance = np.zeros((len(predictions), len(references), predictions.shape[-1]), dtype=dtype)
                # iterate over the predictions and references in batches
                for i in range(0, len(predictions) + batch_size, batch_size):
                    for j in range(0, len(references) + batch_size, batch_size):
                        d = self._compute_distance(
                            predictions[i : i + batch_size, None],
                            references[None, j : j + batch_size],
                            metric=metric,
                            axis=-2,
                        )
                        distance[i : i + batch_size, j : j + batch_size] = d
        else:
            distance = self._compute_distance(predictions[:, None], references[None, :], metric=metric, axis=-2)
        return distance

    def _compute_metrics(
        self,
        distance: np.ndarray,
        eps: float = 1e-8,
        cuc_n_calculation: int = 3,
        cuc_n_samples: Union[List[int], str] = "auto",
    ) -> dict[str, float | list[float]]:
        """
        Compute metrics from the distance matrix
        Args:
            distance: distance matrix. shape: (num_generation, num_reference)
        Returns:
        """
        index_distance = distance.diagonal(axis1=0, axis2=1).mean().item()

        # matching scores
        # best match for each generated time series
        # shape: (num_generation,)
        best_match = np.argmin(distance, axis=-1)
        precision_distance = distance[np.arange(len(best_match)), best_match].mean().item()

        # best match for each reference time series
        # shape: (num_reference,)
        best_match_inv = np.argmin(distance, axis=0)
        recall_distance = distance[best_match_inv, np.arange(len(best_match_inv))].mean().item()

        mean_distance = (precision_distance + recall_distance) / 2

        # matching precision, recall and f1
        matching_precision = np.unique(best_match_inv).size / len(best_match)
        matching_recall = np.unique(best_match).size / len(best_match_inv)
        matching_f1 = 2 / (1 / (matching_precision + eps) + 1 / (matching_recall + eps))

        # cuc
        coverages, cuc = self.compute_cuc(best_match, len(best_match_inv), cuc_n_calculation, cuc_n_samples)
        return {
            "precision_distance": precision_distance,
            "recall_distance": recall_distance,
            "mean_distance": mean_distance,
            "index_distance": index_distance,
            "matching_precision": matching_precision,
            "matching_recall": matching_recall,
            "matching_f1": matching_f1,
            "cuc": cuc,
            "coverages": coverages,
            "match": best_match,
            "match_inv": best_match_inv,
        }